As of 2020, Ciro Santilli is getting excited about quantum computing, which is a deep tech field.
He's a bit lazy to explain why here, but Googling will be more than enough.
There is a risk it will fizzle and the bubble pop, like any revolution.
But recent developments are making it too exciting to ignore.
Microwave oven by Ciro Santilli 37 Updated 2025-07-16
Video 1.
How Microwaves Work by National MagLab (2017)
Source. A bit meh. Does not mention the word cavity magnetron!
Video 2.
How a Microwave Oven Works by EngineerGuy
. Source. Cool demonstration of the standing waves in the cavity with cheese!
Optical table by Ciro Santilli 37 Updated 2025-07-16
For example, that is how most modern microscopes are prototyped, see for example Video "Two Photon Microscopy by Nemonic NeuroNex (2019)".
This is kind of why they are also sometimes called "optical breadboarbds", since breadboards are what we use for early prototyping in electronics. Wikipedia however says "optical breadboard" is a simpler and cheaper type of optical table with less/no stabilization.
Video 1.
A simple refracting telescope built on an optical bench by plenum88 (2013)
Source.
Higgs boson by Ciro Santilli 37 Updated 2025-07-16
Initially there were mathematical reasons why people suspected that all boson needed to have 0 mass as is the case for photons a gluons, see Goldstone's theorem.
However, experiments showed that the W boson and the Z boson both has large non-zero masses.
So people started theorizing some hack that would fix up the equations, and they came up with the higgs mechanism.
"Barys" means "heavy" in Greek, because protons and neutrons was what made most of the mass of known ordinary matter, as opposed notably to electrons.
Baryons can be contrasted with:
Hypercube by Ciro Santilli 37 Updated 2025-07-16
square, cube. 4D case known as tesseract.
Convex hull of all (Cartesian product power) D-tuples, e.g. in 3D:
( 1,  1,  1)
( 1,  1, -1)
( 1, -1,  1)
( 1, -1, -1)
(-1,  1,  1)
(-1,  1, -1)
(-1, -1,  1)
(-1, -1, -1)
From this we see that there are vertices.
Two vertices are linked iff they differ by a single number. So each vertex has D neighbors.
Parity violation by Ciro Santilli 37 Updated 2025-09-17
This is quite mind blowing. The laws of physics actually differentiate between particles and antiparticles moving in opposite directions!!!
Only the weak interaction however does it of the fundamental interactions.
Some historical remarks on Surely You're Joking, Mr. Feynman section "The 7 Percent Solution".
It gets worse of course with CP Violation.
Video 1.
This Particle Breaks Time Symmetry by Veritasium
. Source.
Calculus of variations by Ciro Santilli 37 Updated 2025-07-16
Calculus of variations is the field that searches for maxima and minima of Functionals, rather than the more elementary case of functions from to .
Leonard Susskind by Ciro Santilli 37 Updated 2025-07-16
The bald confident chilled out particle physics guy from Stanford University!
One can't help but wonder if he smokes pot or not.
Also one can't stop thinking abot Leonard Hofstadter from The Big Bang Theory upoen hearing his name.
Figure 1.
Leonard Susskind lecturing in 2013
. Source.
Subtle is the Lord by Abraham Pais (1982) page 85:
However, it became increasingly difficult in chemical circles to deny the reality of molecules after 1874, the year in which Jacobus Henricus van't Hoff and Joseph Achille Le Bel independently explained the isomerism of certain organic substances in terms of stereochemical properties of carbon compounds.
so it is quite cool to see that organic chemistry is one of the things that pushed atomic theory forward. Because when you start to observe that isomers has different characteristics, despite identical proportions of atoms, this is really hard to explain without talking about the relative positions of the atoms within molecules!
TODO: is there anything even more precise that points to atoms in stereoisomers besides just the "two isomers with different properties" thing?
Aerobic organism by Ciro Santilli 37 Updated 2025-07-16
Video 1.
Do Bacteria Need Oxygen? by Microscope Project (2022)
Source. Shows how (persumed) aerobic bacteria flock towards an air bublle in water.
Skew-symmetric matrix by Ciro Santilli 37 Updated 2025-07-16
WTF is a skew? "Antisymmetric" is just such a better name! And it also appears in other definitions such as antisymmetric multilinear map.
Cycle graph (algebra) by Ciro Santilli 37 Updated 2025-07-16
How to build it: math.stackexchange.com/questions/3137319/how-in-general-does-one-construct-a-cycle-graph-for-a-group/3162746#3162746 good answer with ASCII art. You basically just pick each element, and repeatedly apply it, and remove any path that has a longer version.
Immediately gives the generating set of a group by looking at elements adjacent to the origin, and more generally the order of each element.
TODO uniqueness: can two different groups have the same cycle graph? It does not seem to tell us how every element interact with every other element, only with itself. This is in contrast with the Cayley graph, which more accurately describes group structure (but does not give the order of elements as directly), so feels like it won't be unique.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact