NP-hard by Ciro Santilli 35 Updated +Created
A problem such that all NP problems can be reduced in polynomial time to it.
Ladner's Theorem by Ciro Santilli 35 Updated +Created
P versus NP problem by Ciro Santilli 35 Updated +Created
Interesting because of the Cook-Levin theorem: if only a single NP-complete problem were in P, then all NP-complete problems would also be P!
We all know the answer for this: either false or independent.
ELEMENTARY (complexity) by Ciro Santilli 35 Updated +Created
Galactic algorithm by Ciro Santilli 35 Updated +Created
Ackermann function by Ciro Santilli 35 Updated +Created
To get an intuition for it, see the sample computation at: en.wikipedia.org/w/index.php?title=Ackermann_function&oldid=1170238965#TRS,_based_on_2-ary_function where in this context. From this, we immediately get the intuition that these functions are recursive somehow.
Non-primitive total recursive function by Ciro Santilli 35 Updated +Created
Primitive recursive function by Ciro Santilli 35 Updated +Created
In intuitive terms it consists of all integer functions, possibly with multiple input arguments, that can be written only with a sequence of:
  • variable assignments
  • addition and subtraction
  • integer comparisons and if/else
  • for loops
for (i = 0; i < n; i++)
and such that n does not change inside the loop body, i.e. no while loops with arbitrary conditions.
n does not have to be a constant, it may come from previous calculations. But it must not change inside the loop body.
Primitive recursive functions basically include every integer function that comes up in practice. Primitive recursive functions can have huge complexity, and it strictly contains EXPTIME. As such, they mostly only come up in foundation of mathematics contexts.
The cool thing about primitive recursive functions is that the number of iterations is always bound, so we are certain that they terminate and are therefore computable.
This also means that there are necessarily functions which are not primitive recursive, as we know that there must exist uncomputable functions, e.g. the busy beaver function.
Adding unbounded while loops of course enables us to simulate arbitrary Turing machines, and therefore increases the complexity class.
More finely, there are non-primitive total recursive functions, e.g. most famously the Ackermann function.
Little-o notation by Ciro Santilli 35 Updated +Created
Stronger version of the big O notation, basically means that ratio goes to zero. In big O notation, the ratio does not need to go to zero.
So in informal terms, big O notation means , and little-o notation means .
E.g.:
  • K does not tend to zero
Complexity class by Ciro Santilli 35 Updated +Created
Iterative algorithm by Ciro Santilli 35 Updated +Created
Iteration by Ciro Santilli 35 Updated +Created
Recursion (computer science) by Ciro Santilli 35 Updated +Created
Domain (biology) by Ciro Santilli 35 Updated +Created
Dynamic array by Ciro Santilli 35 Updated +Created
Hash table by Ciro Santilli 35 Updated +Created
Mineral (nutrient) by Ciro Santilli 35 Updated +Created
Governments should provide basic Internet infrastructure by Ciro Santilli 35 Updated +Created
Companies are getting too much power to distort regulations and destroy privacy.
Taxes pay for the physical car roads, so why shouldn't they also pay for the "online roads" of today?
Other less simple ones that might also be feasible:
All of them should have strong privacy enabled by default: end-to-end encryption, logless, etc. Governments are not going to like this part.
And then if you ever forget a password or lose a multi-factor authentication token, you can just go to an ID center with your ID to recover it.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact