Group homomorphism by Ciro Santilli 37 Updated 2025-07-16
Like isomorphism, but does not have to be one-to-one: multiple different inputs can have the same output.
The image is as for any function smaller or equal in size as the domain of course.
This brings us to the key intuition about group homomorphisms: they are a way to split out a larger group into smaller groups that retains a subset of the original structure.
As shown by the fundamental theorem on homomorphisms, each group homomorphism is fully characterized by a normal subgroup of the domain.
Cayley graph by Ciro Santilli 37 Updated 2025-07-16
You select a generating set of a group, and then you name every node with them, and you specify:
  • each node by a product of generators
  • each edge by what happens when you apply a generator to each element
Not unique: different generating sets lead to different graphs, see e.g. two possible en.wikipedia.org/w/index.php?title=Cayley_graph&oldid=1028775401#Examples for the
Cycle graph (algebra) by Ciro Santilli 37 Updated 2025-07-16
How to build it: math.stackexchange.com/questions/3137319/how-in-general-does-one-construct-a-cycle-graph-for-a-group/3162746#3162746 good answer with ASCII art. You basically just pick each element, and repeatedly apply it, and remove any path that has a longer version.
Immediately gives the generating set of a group by looking at elements adjacent to the origin, and more generally the order of each element.
TODO uniqueness: can two different groups have the same cycle graph? It does not seem to tell us how every element interact with every other element, only with itself. This is in contrast with the Cayley graph, which more accurately describes group structure (but does not give the order of elements as directly), so feels like it won't be unique.
Take the element and apply it to itself. Then again. And so on.
In the case of a finite group, you have to eventually reach the identity element again sooner or later, giving you the order of an element of a group.
The continuous analogue for the cycle of a group are the one parameter subgroups. In the continuous case, you sometimes reach identity again and to around infinitely many times (which always happens in the finite case), but sometimes you don't.
Semidirect product by Ciro Santilli 37 Updated 2025-07-16
As per en.wikipedia.org/w/index.php?title=Semidirect_product&oldid=1040813965#Properties, unlike the Direct product, the semidirect product of two goups is neither unique, nor does it always exist, and there is no known algorithmic way way to tell if one exists or not.
This is because reaching the "output" of the semidirect produt of two groups requires extra non-obvious information that might not exist. This is because the semi-direct product is based on the product of group subsets. So you start with two small and completely independent groups, and it is not obvious how to join them up, i.e. how to define the group operation of the product group that is compatible with that of the two smaller input groups. Contrast this with the Direct product, where the composition is simple: just use the group operation of each group on either side.
Product of group subsets
So in other words, it is not a function like the Direct product. The semidiret product is therefore more like a property of three groups.
The semidirect product is more general than the direct product of groups when thinking about the group extension problem, because with the direct product of groups, both subgroups of the larger group are necessarily also normal (trivial projection group homomorphism on either side), while for the semidirect product, only one of them does.
Conversely, en.wikipedia.org/w/index.php?title=Semidirect_product&oldid=1040813965 explains that if , and besides the implied requirement that N is normal, H is also normal, then .
Smallest example: where is a dihedral group and are cyclic groups. (the rotation) is a normal subgroup of , but (the flip) is not.
Note that with the Direct product instead we get and not , i.e. as per the direct product of two cyclic groups of coprime order is another cyclic group.
TODO:
Subquotient by Ciro Santilli 37 Updated 2025-07-16
That normal subgroup does not have have to be a normal subgroup of G.
As an overkill example, the happy family are subquotients of the monster group, but the monster group is simple.
Although quotients look a bit real number division, there are some important differences with the "group analog of multiplication" of direct product of groups.
If a group is isomorphic to the direct product of groups, we can take a quotient of the product to retrieve one of the groups, which is somewhat analogous to division: math.stackexchange.com/questions/723707/how-is-the-quotient-group-related-to-the-direct-product-group
The "converse" is not always true however: a group does not need to be isomorphic to the product of one of its normal subgroups and the associated quotient group. The wiki page provides an example:
Given G and a normal subgroup N, then G is a group extension of G/N by N. One could ask whether this extension is trivial or split; in other words, one could ask whether G is a direct product or semidirect product of N and G/N. This is a special case of the extension problem. An example where the extension is not split is as follows: Let , and which is isomorphic to Z2. Then G/N is also isomorphic to Z2. But Z2 has only the trivial automorphism, so the only semi-direct product of N and G/N is the direct product. Since Z4 is different from Z2 × Z2, we conclude that G is not a semi-direct product of N and G/N.
TODO find a less minimal but possibly more important example.
I think this might be equivalent to why the group extension problem is hard. If this relation were true, then taking the direct product would be the only way to make larger groups from normal subgroups/quotients. But it's not.
Normal subgroup by Ciro Santilli 37 Updated 2025-07-16
Only normal subgroups can be used to form quotient groups: their key definition is that they plus their cosets form a group.
One key intuition is that "a normal subgroup is the kernel" of a group homomorphism, and the normal subgroup plus cosets are isomorphic to the image of the isomorphism, which is what the fundamental theorem on homomorphisms says.
Therefore "there aren't that many group homomorphism", and a normal subgroup it is a concrete and natural way to uniquely represent that homomorphism.
The best way to think about the, is to always think first: what is the homomorphism? And then work out everything else from there.
Simple group by Ciro Santilli 37 Updated 2025-07-16
Does not have any non-trivial normal subgroup.
And therefore, going back to our intuition that due to the fundamental theorem on homomorphisms there is one normal group per homomorphism, a simple group is one that has no non-trivial homomorphisms.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact