Quantum field theory lecture by Tobias Osborne (2017) Lecture 14 by
Ciro Santilli 37 Updated 2025-07-16
Quantum field theory lecture by Tobias Osborne (2017) Lecture 15 by
Ciro Santilli 37 Updated 2025-07-16
Advanced quantum field theory lecture by Tobias Osborne (2017) by
Ciro Santilli 37 Updated 2025-07-16
When the word "advanced" precedes QFT, you know that the brainrape is imminent!!!
Big goal: explain the Standard Model.
Advanced quantum field theory lecture by Tobias Osborne (2017) Lecture 2 by
Ciro Santilli 37 Updated 2025-07-16
- web.archive.org/web/20150623011722/http://users.physik.fu-berlin.de/~kleinert/b6/psfiles/qft.pdf by Hagen Kleinert (2015). 1500 pages!
- The Quantum Theory of Fields by Steven Weinberg (2013) www.cambridge.org/core/books/quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF
- Quantum Field Theory by Lewis H. Ryder 2nd edition (1996) www.amazon.co.uk/Quantum-Field-Theory-Lewis-Ryder/dp/0521478146
- Lectures of Quantum Field Theory by Ashok Das (2018) www.amazon.co.uk/Lectures-Quantum-Field-Theory-Ashok-ebook/dp/B07CL8Y3KY
- A Modern Introduction to Quantum Field Theory by Michele Maggiore (2005) www.amazon.co.uk/Modern-Introduction-Quantum-Theory-Physics/dp/0198520743
No-Nonsense Quantum Field Theory by Jakob Schwichtenberg (2020) by
Ciro Santilli 37 Updated 2025-07-16
This book really tries to recall basic things to ensure that the reader will be able to understand the more advanced ones.
But Ciro Santilli really prefers it when authors error on the side of obvious.
Quantum Field Theory for The Gifted Amateur by Tom Lancaster (2015) by
Ciro Santilli 37 Updated 2025-07-16
Student Friendly Quantum Field Theory by Robert D Klauber (2013) by
Ciro Santilli 37 Updated 2025-07-16
Problem Book in Quantum Field Theory by Voja Radovanovic (2008) by
Ciro Santilli 37 Updated 2025-07-16
This didn't really deliver. It does start from the basics, but it is often hard to link those basics to more interesting or deeper points. Also like many other Quantum field theory book, it does not seem to contain a single comparison between a theoretical result and an experiment.
An Introduction To Quantum Field Theory by Peskin and Schroeder (1995) by
Ciro Santilli 37 Updated 2025-07-16
Unfortunately, this approach bores Ciro Santilli to death. Or perhaps is too just advanced for him to appreciate. Either of those.
800+ pages.
Quantum field theory lecture by Tobias Osborne (2017) mentions that quantization is a guess.
This is one of the first examples in most quantum field theory.
It usually does not involve any forces, just the interpretation of what the quantum field is.
www.youtube.com/watch?v=zv94slY6WqY&list=PLSpklniGdSfSsk7BSZjONcfhRGKNa2uou&index=2 Quantization Of A Free Real Scalar Field by Dietterich Labs (2019)
Quantum superposition is really weird because it is fundamentally different than "either definite state but I don't know which", because the superposition state leads to different measurements than the non-superposition state.
Examples:
- www.youtube.com/watch?v=tt8gVXDsh7Q "Interference in quantum mechanics" by Looking Glass Universe (2015) shows how a left-right spin measurement has a defined value for a superposed half up half down state, but not for a pure up state.TODO can this be conducted? As mentioned in the video, this is closely linked to the fact that you can describe the wave function in multiple different bases (up/down or left/right), which is also at the root of the uncertainty principle.
- Video "Quantum Mechanics 9b - Photon Spin and Schrodinger's Cat II by ViaScience (2013)" gives a similar photon version
- it seems that the single particle double slit experiment can also be thought of as in terms of a superposition of "the particle goes through the right" and "the particle goes through the right", although it is a bit harder to thing about as it is not a discrete process
Quantum entanglement is often called spooky/surprising/unintuitive, but they key question is to understand why.
To understand that, you have to understand why it is fundamentally impossible for the entangled particle pair be in a predefined state according to experiments done e.g. where one is deterministically yes and the other deterministically down.
In other words, why local hidden-variable theory is not valid.
How to generate entangled particles:
- particle decay, notably pair production
- for photons, notably: spontaneous parametric down-conversion, e.g.: www.youtube.com/watch?v=tn1sEaw1K2k "Shanni Prutchi Construction of an Entangled Photon Source" by HACKADAY (2015). Estimatd price: 5000 USD.
Contains the clearest Bell test experiment description seen so far.
It clearly describes the photon-based 22.5, 45 degree/85%/15% probability photon polarization experiment and its result conceptually.
It does not mention spontaneous parametric down-conversion but that's what they likely hint at.
Done in Collaboration with 3Blue1Brown.
Question asking further clarification on why the 100/85/50 thing is surprising: physics.stackexchange.com/questions/357039/why-is-the-quantum-venn-diagram-paradox-considered-a-paradox/597982#597982
Quantum Mechanics: Animation explaining quantum physics by Physics Videos by Eugene Khutoryansky (2013)
Source. Usual Eugene, good animations, and not too precise explanations :-) youtu.be/iVpXrbZ4bnU?t=922 describes a conceptual spin entangled electron-positron pair production Stern-Gerlach experiment as a Bell test experiments. The 85% is mentioned, but not explained at all.Quantum Entanglement Lab by Scientific American (2013)
Source. The hosts interview Professor Enrique Galvez of Colgate University who shows briefly the optical table setup without great details, and then moves to a whiteboard explanation. Treats the audience as stupid, doesn't say the keywords spontaneous parametric down-conversion and Bell's theorem which they clearly allude to. You can even them showing a two second footage of the professor explaining the rotation experiments and the data for it, but that's all you get.Some of the most remarkable ones seem to be:
- Alain Aspect 1982
- Hensen et al., Giustina et al., Shalm et al. (2015): "loophole-free" Bell tests
The neutron temperature example is crucial: you just can't give the cross section of a target alone, the energy of the incoming beam also matters.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





