Forms the bacterial cell wall.
From the Wikipedia image we can see clearly the polymer structure formed: it is a mesh with:
- sugar covalent bond chains in one direction. These have two types of monosaccharide, NAM and NAG
- peptide chains on the other, and only coming off from NAM
Peptidoglycan polymer structure
. Source. Similar to a college, but led by religious denomination leaders rather than fellows.
The first thing we did was to filter the water samples with a membrane filter that is so fine that not even bacteria can pass through, but water can.
Therefore, after filtration, we would have all particles such as bacteria and larger dirt pieces in the filter.
From the 1 liter in each bottle, we only used 400 ml because previous experiments showed that filtering the remaining 600 ml is very time consuming because the membrane filter gets clogged up.
Therefore, the filtration step allows us to reduce those 400 ml volumes to more manageable Eppendorf tube volumes: Figure 1. "An Eppendorf tube". Reagents are expensive, and lab bench centrifuges are small!
Labelled Eppendorf tubes on a rack
. Source. Since the filter is so fine, filtering by gravity alone would take forever, and so we used a vacuum pump to speed thing up!
For that we used:
Peeling the vacuum pump filter protection peel before usage
. Source. Placing the vacuum pump filter
. Source. Inferior compared to self-directed learning, but better than the traditional "everyone gets the same" approach.
There's a billion simple looking expressions which are not known to be transcendental numbers or not. It's cute simple to state but hard to prove at its best.
Open as of 2020:
Bibliography:
- www.quantamagazine.org/recounting-the-history-of-maths-transcendental-numbers-20230627/ How Math Achieved Transcendence by David S. Richeson (2023).
Used a lot in quantum mechanics, where the equations are really hard to solve. There's even a dedicated wiki page for it: en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics). Notably, Feynman diagrams are a way to represent perturbation calculations in quantum field theory.
tx 243dea31863e94dc2f293489db02452e9bde279df1ab7feb6e456a4af672156a contains another upload script. The help reads:
Publish text in the blockchain, suitably padded for easy recovery with strings
Likely the best JavaScript 2D game engine as of 2023.Uses Matter.js as a physics engine if enabled. There's also an alternative (in-house?) "arcade" engine: photonstorm.github.io/phaser3-docs/Phaser.Physics.Arcade.ArcadePhysics.html but it appears to be simpler/less robust (but also possibly faster).
- github.com/photonstorm/phaser
- phaser.io/
- phaser.io/examples/v3.85.0/games contains the demo games
An "alternative" formulation of quantum mechanics that does not involve operators.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact