Equation of state Updated +Created
Image metadata format Updated +Created
Computer Updated +Created
The artistic instrument that enables the ultimate art: coding, See also: Section "The art of programming".
Much more useful than instruments used in inferior arts, such as pianos or paintbrushes.
Unlike other humans, computers are mindless slaves that do exactly what they are told to, except for occasional cosmic ray bit flips. Until they take over the world that is.
Video 1.
A computer is the equivalent of a bicycle for our minds by Steve Jobs (1980)
Source. Likely an excerpt from an interview done for a documentary in 1980. TODO exact source.
Video 2.
Steve Jobs talking about the Internet (1995)
Source.
The web is incredibly exciting, because it is the fulfillment of a lot of our dreams, that the computer would ultimately primarily not be a device for computation, but [sic] metamorphisize into a device for communication.
also:
Secondly it exciting because Microsoft doesn't own it, and therefore there is a tremendous amount of innovation happening.
then he talks about the impending role for online sales. Amazon incoming.
Computers basically have two applications:
  • computation
  • communication. Notably, computers through the Internet allow for modes of communication where:
    • both people don't have to be on the same phone line at the exact same time, a server can relay your information to other people
    • anyone can broadcast information easily and for almost free, again due to servers being so good at handling that
Generally, the smaller a computer, the more it gets used for communication rather than computing.
The early computers were large and expensive, and basically only used for computing. E.g. ENIAC was used for calculating ballistic tables.
Communication only came later, and it was not obvious to people at first how incredibly important that role would be.
This is also well illustrated in the documentary Glory of the Geeks. Full interview at: www.youtube.com/watch?v=TRZAJY23xio. It is apparently known as the "Lost Interview" and it was by Cringely himself: www.youtube.com/watch?v=bfgwCFrU7dI for his Triumph of the Nerds documentary.
Football Updated +Created
Football is a synonym for association football, can we be done with that! The word "soccer" is an aberration.
See also Ciro Santilli's critique of rooting for sport teams.
Fantasy Updated +Created
Neural network Updated +Created
Computer vision Updated +Created
Machine learning bibliography Updated +Created
Magic: The Gathering content creator Updated +Created
Covariant derivative Updated +Created
A generalized definition of derivative that works on manifolds.
TODO: how does it maintain a single value even across different coordinate charts?
Player versus player Updated +Created
Del Updated +Created
Oh, and if it weren't enough, mathematicians have a separate name for the damned nabla symbol : "del" instead of "nabla".
TODO why is it called "Del"? Is is because it is an inverted uppercase delta?
Epic Stack Overflow users Updated +Created
These are some users Ciro Santilli particularly respects, mostly due to their contributions to systems programming subjects:
Ciro also really likes the following users, a bit less like Gods, and bit more like friends:
Other interesting people:
K-ary trees to the rescue Updated +Created
The algorithmically minded will have noticed that paging requires associative array (like Java Map of Python dict()) abstract data structure where:
  • the keys are linear pages addresses, thus of integer type
  • the values are physical page addresses, also of integer type
The single level paging scheme uses a simple array implementation of the associative array:
  • the keys are the array index
  • this implementation is very fast in time
  • but it is too inefficient in memory
and in C pseudo-code it looks like this:
linear_address[0]      = physical_address_0
linear_address[1]      = physical_address_1
linear_address[2]      = physical_address_2
...
linear_address[2^20-1] = physical_address_N
But there another simple associative array implementation that overcomes the memory problem: an (unbalanced) k-ary tree.
A K-ary tree, is just like a binary tree, but with K children instead of 2.
Using a K-ary tree instead of an array implementation has the following trade-offs:
  • it uses way less memory
  • it is slower since we have to de-reference extra pointers
In C-pseudo code, a 2-level K-ary tree with K = 2^10 looks like this:
level0[0] = &level1_0[0]
    level1_0[0]      = physical_address_0_0
    level1_0[1]      = physical_address_0_1
    ...
    level1_0[2^10-1] = physical_address_0_N
level0[1] = &level1_1[0]
    level1_1[0]      = physical_address_1_0
    level1_1[1]      = physical_address_1_1
    ...
    level1_1[2^10-1] = physical_address_1_N
...
level0[N] = &level1_N[0]
    level1_N[0]      = physical_address_N_0
    level1_N[1]      = physical_address_N_1
    ...
    level1_N[2^10-1] = physical_address_N_N
and we have the following arrays:
  • one directory, which has 2^10 elements. Each element contains a pointer to a page table array.
  • up to 2^10 pagetable arrays. Each one has 2^10 4 byte page entries.
and it still contains 2^10 * 2^10 = 2^20 possible keys.
K-ary trees can save up a lot of space, because if we only have one key, then we only need the following arrays:
  • one directory with 2^10 entries
  • one pagetable at directory[0] with 2^10 entries
  • all other directory[i] are marked as invalid, don't point to anything, and we don't allocate pagetable for them at all
useCallback Updated +Created
Exponential function Updated +Created
Exif Updated +Created
ExifTool Updated +Created
Multi-level paging scheme numerical translation example Updated +Created
Page directory given to process by the OS:
entry index   entry address      page table address  present
-----------   ----------------   ------------------  --------
0             CR3 + 0      * 4   0x10000             1
1             CR3 + 1      * 4                       0
2             CR3 + 2      * 4   0x80000             1
3             CR3 + 3      * 4                       0
...
2^10-1        CR3 + 2^10-1 * 4                       0
Page tables given to process by the OS at PT1 = 0x10000000 (0x10000 * 4K):
entry index   entry address      page address  present
-----------   ----------------   ------------  -------
0             PT1 + 0      * 4   0x00001       1
1             PT1 + 1      * 4                 0
2             PT1 + 2      * 4   0x0000D       1
...                                  ...
2^10-1        PT1 + 2^10-1 * 4   0x00005       1
Page tables given to process by the OS at PT2 = 0x80000000 (0x80000 * 4K):
entry index   entry address     page address  present
-----------   ---------------   ------------  ------------
0             PT2 + 0     * 4   0x0000A       1
1             PT2 + 1     * 4   0x0000C       1
2             PT2 + 2     * 4                 0
...
2^10-1        PT2 + 0x3FF * 4   0x00003       1
where PT1 and PT2: initial position of page table 1 and page table 2 for process 1 on RAM.
With that setup, the following translations would happen:
linear    10 10 12 split  physical
--------  --------------  ----------
00000001  000 000 001     00001001
00001001  000 001 001     page fault
003FF001  000 3FF 001     00005001
00400000  001 000 000     page fault
00800001  002 000 001     0000A001
00801004  002 001 004     0000C004
00802004  002 002 004     page fault
00B00001  003 000 000     page fault
Let's translate the linear address 0x00801004 step by step:
  • In binary the linear address is:
    0    0    8    0    1    0    0    4
    0000 0000 1000 0000 0001 0000 0000 0100
  • Grouping as 10 | 10 | 12 gives:
    0000000010 0000000001 000000000100
    0x2        0x1        0x4
    which gives:
    page directory entry = 0x2
    page table     entry = 0x1
    offset               = 0x4
    So the hardware looks for entry 2 of the page directory.
  • The page directory table says that the page table is located at 0x80000 * 4K = 0x80000000. This is the first RAM access of the process.
    Since the page table entry is 0x1, the hardware looks at entry 1 of the page table at 0x80000000, which tells it that the physical page is located at address 0x0000C * 4K = 0x0000C000. This is the second RAM access of the process.
  • Finally, the paging hardware adds the offset, and the final address is 0x0000C004.
Page faults occur if either a page directory entry or a page table entry is not present.
The Intel manual gives a picture of this translation process in the image "Linear-Address Translation to a 4-KByte Page using 32-Bit Paging": Figure 1. "x86 page translation process"
Figure 1.
x86 page translation process
.
Blaise Pascal Updated +Created
Good film about him: Blaise Pascal (1972).
Good quote from his Les Provinciales (1656-57) Letter XII, p. 227:
The war in which violence endeavours to crush truth is a strange and a long one.
All the efforts of violence cannot weaken truth, but only serve to exalt it the more.
The light of truth can do nothing to arrest violence; nay, it serves to provoke it still more.
When force opposes force, the more powerful destroys the less; when words are opposed to words, those which are true and convincing destroy and scatter those which are vain and false; but violence and truth can do nothing against each other.
Yet, let no one imagine that things are equal between them; for there is this final difference, that the course of violence is limited by the ordinance of God, who directs its workings to the glory of the truth, which it attacks; whereas truth subsists eternally, and triumphs finally over its enemies, because it is eternal, and powerful, like God Himself.
French version reproduced at: www.dicocitations.com/citation/auteurajout35106.php.

Unlisted articles are being shown, click here to show only listed articles.