XML predecessor.
Once you hear about the uncomputability of such problems, it makes you see that all Diophantine equation questions risk being undecidable, though in some simpler cases we manage to come up with answers. The feeling is similar to watching people trying to solve the Halting problem, e.g. in the effort to determine BB(5).
The main way to sequence DNA methylation. Converts methylated cytosine to uracil, and then we can sequence those.
The key model database is located in the source code at
reconstruction/ecoli/flat
.Let's try to understand some interesting looking, with a special focus on our understanding of the tiny E. Coli K-12 MG1655 operon thrLABC part of the metabolism, which we have well understood at Section "E. Coli K-12 MG1655 operon thrLABC".
We'll realize that a lot of data and IDs come from/match BioCyc quite closely.
reconstruction/ecoli/flat/compartments.tsv
contains cellular compartment information:"abbrev" "id" "n" "CCO-BAC-NUCLEOID" "j" "CCO-CELL-PROJECTION" "w" "CCO-CW-BAC-NEG" "c" "CCO-CYTOSOL" "e" "CCO-EXTRACELLULAR" "m" "CCO-MEMBRANE" "o" "CCO-OUTER-MEM" "p" "CCO-PERI-BAC" "l" "CCO-PILUS" "i" "CCO-PM-BAC-NEG"
CCO
: "Celular COmpartment"BAC-NUCLEOID
: nucleoidCELL-PROJECTION
: cell projectionCW-BAC-NEG
: TODO confirm: cell wall (of a Gram-negative bacteria)CYTOSOL
: cytosolEXTRACELLULAR
: outside the cellMEMBRANE
: cell membraneOUTER-MEM
: bacterial outer membranePERI-BAC
: periplasmPILUS
: pilusPM-BAC-NEG
: TODO: plasma membrane, but that is the same as cell membrane no?
reconstruction/ecoli/flat/promoters.tsv
contains promoter information. Simple file, sample lines:corresponds to E. Coli K-12 MG1655 promoter thrLp, which starts as position 148."position" "direction" "id" "name" 148 "+" "PM00249" "thrLp"
reconstruction/ecoli/flat/proteins.tsv
contains protein information. Sample line corresponding to e. Coli K-12 MG1655 gene thrA:so we understand that:"aaCount" "name" "seq" "comments" "codingRnaSeq" "mw" "location" "rnaId" "id" "geneId" [91, 46, 38, 44, 12, 53, 30, 63, 14, 46, 89, 34, 23, 30, 29, 51, 34, 4, 20, 0, 69] "ThrA" "MRVL..." "Location information from Ecocyc dump." "AUGCGAGUGUUG..." [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 89103.51099999998, 0.0, 0.0, 0.0, 0.0] ["c"] "EG10998_RNA" "ASPKINIHOMOSERDEHYDROGI-MONOMER" "EG10998"
aaCount
: amino acid count, how many of each of the 20 proteinogenic amino acid are thereseq
: full sequence, using the single letter abbreviation of the proteinogenic amino acidsmw
; molecular weight? The 11 components appear to be given atreconstruction/ecoli/flat/scripts/unifyBulkFiles.py
:so they simply classify the weight? Presumably this exists for complexes that have multiple classes?molecular_weight_keys = [ '23srRNA', '16srRNA', '5srRNA', 'tRNA', 'mRNA', 'miscRNA', 'protein', 'metabolite', 'water', 'DNA', 'RNA' # nonspecific RNA ]
23srRNA
,16srRNA
,5srRNA
are the three structural RNAs present in the ribosome: 23S ribosomal RNA, 16S ribosomal RNA, 5S ribosomal RNA, all others are obvious:- tRNA
- mRNA
- protein. This is the seventh class, and this enzyme only contains mass in this class as expected.
- metabolite
- water
- DNA
- RNA: TODO
rna
vsmiscRNA
location
: cell compartment where the protein is present,c
defined atreconstruction/ecoli/flat/compartments.tsv
as cytoplasm, as expected for something that will make an amino acid
reconstruction/ecoli/flat/rnas.tsv
: TODO vstranscriptionUnits.tsv
. Sample lines:"halfLife" "name" "seq" "type" "modifiedForms" "monomerId" "comments" "mw" "location" "ntCount" "id" "geneId" "microarray expression" 174.0 "ThrA [RNA]" "AUGCGAGUGUUG..." "mRNA" [] "ASPKINIHOMOSERDEHYDROGI-MONOMER" "" [0.0, 0.0, 0.0, 0.0, 790935.00399999996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ["c"] [553, 615, 692, 603] "EG10998_RNA" "EG10998" 0.0005264904
halfLife
: half-lifemw
: molecular weight, same as inreconstruction/ecoli/flat/proteins.tsv
. This molecule only have weight in themRNA
class, as expected, as it just codes for a proteinlocation
: same as inreconstruction/ecoli/flat/proteins.tsv
ntCount
: nucleotide count for each of the ATGCmicroarray expression
: presumably refers to DNA microarray for gene expression profiling, but what measure exactly?
reconstruction/ecoli/flat/sequence.fasta
: FASTA DNA sequence, first two lines:>E. coli K-12 MG1655 U00096.2 (1 to 4639675 = 4639675 bp) AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTG
reconstruction/ecoli/flat/transcriptionUnits.tsv
: transcription units. We can observe for example the two different transcription units of the E. Coli K-12 MG1655 operon thrLABC in the lines:"expression_rate" "direction" "right" "terminator_id" "name" "promoter_id" "degradation_rate" "id" "gene_id" "left" 0.0 "f" 310 ["TERM0-1059"] "thrL" "PM00249" 0.198905992329492 "TU0-42486" ["EG11277"] 148 657.057317358791 "f" 5022 ["TERM_WC-2174"] "thrLABC" "PM00249" 0.231049060186648 "TU00178" ["EG10998", "EG10999", "EG11000", "EG11277"] 148
promoter_id
: matches promoter id inreconstruction/ecoli/flat/promoters.tsv
gene_id
: matches id inreconstruction/ecoli/flat/genes.tsv
id
: matches exactly those used in BioCyc, which is quite nice, might be more or less standardized:
reconstruction/ecoli/flat/genes.tsv
"length" "name" "seq" "rnaId" "coordinate" "direction" "symbol" "type" "id" "monomerId" 66 "thr operon leader peptide" "ATGAAACGCATT..." "EG11277_RNA" 189 "+" "thrL" "mRNA" "EG11277" "EG11277-MONOMER" 2463 "ThrA" "ATGCGAGTGTTG" "EG10998_RNA" 336 "+" "thrA" "mRNA" "EG10998" "ASPKINIHOMOSERDEHYDROGI-MONOMER"
reconstruction/ecoli/flat/metabolites.tsv
contains metabolite information. Sample lines:In the case of the enzyme thrA, one of the two reactions it catalyzes is "L-aspartate 4-semialdehyde" into "Homoserine"."id" "mw7.2" "location" "HOMO-SER" 119.12 ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"] "L-ASPARTATE-SEMIALDEHYDE" 117.104 ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
Starting from the enzyme page: biocyc.org/gene?orgid=ECOLI&id=EG10998 we reach the reaction page: biocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=HOMOSERDEHYDROG-RXN which has reaction IDHOMOSERDEHYDROG-RXN
, and that page which clarifies the IDs:so these are the compounds that we care about.- biocyc.org/compound?orgid=ECOLI&id=L-ASPARTATE-SEMIALDEHYDE: "L-aspartate 4-semialdehyde" has ID
L-ASPARTATE-SEMIALDEHYDE
- biocyc.org/compound?orgid=ECOLI&id=HOMO-SER: "Homoserine" has ID
HOMO-SER
- biocyc.org/compound?orgid=ECOLI&id=L-ASPARTATE-SEMIALDEHYDE: "L-aspartate 4-semialdehyde" has ID
reconstruction/ecoli/flat/reactions.tsv
contains chemical reaction information. Sample lines:"reaction id" "stoichiometry" "is reversible" "catalyzed by" "HOMOSERDEHYDROG-RXN-HOMO-SER/NAD//L-ASPARTATE-SEMIALDEHYDE/NADH/PROTON.51." {"NADH[c]": -1, "PROTON[c]": -1, "HOMO-SER[c]": 1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "NAD[c]": 1} false ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"] "HOMOSERDEHYDROG-RXN-HOMO-SER/NADP//L-ASPARTATE-SEMIALDEHYDE/NADPH/PROTON.53." {"NADPH[c]": -1, "NADP[c]": 1, "PROTON[c]": -1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "HOMO-SER[c]": 1 false ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
catalized by
: here we seeASPKINIHOMOSERDEHYDROGI-CPLX
, which we can guess is a protein complex made out ofASPKINIHOMOSERDEHYDROGI-MONOMER
, which is the ID for thethrA
we care about! This is confirmed incomplexationReactions.tsv
.
reconstruction/ecoli/flat/complexationReactions.tsv
contains information about chemical reactions that produce protein complexes:The"process" "stoichiometry" "id" "dir" "complexation" [ { "molecule": "ASPKINIHOMOSERDEHYDROGI-CPLX", "coeff": 1, "type": "proteincomplex", "location": "c", "form": "mature" }, { "molecule": "ASPKINIHOMOSERDEHYDROGI-MONOMER", "coeff": -4, "type": "proteinmonomer", "location": "c", "form": "mature" } ] "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN" 1
coeff
is how many monomers need to get together for form the final complex. This can be seen from the Summary section of ecocyc.org/gene?orgid=ECOLI&id=ASPKINIHOMOSERDEHYDROGI-MONOMER:Fantastic literature summary! Can't find that in database form there however.Aspartate kinase I / homoserine dehydrogenase I comprises a dimer of ThrA dimers. Although the dimeric form is catalytically active, the binding equilibrium dramatically favors the tetrameric form. The aspartate kinase and homoserine dehydrogenase activities of each ThrA monomer are catalyzed by independent domains connected by a linker region.
reconstruction/ecoli/flat/proteinComplexes.tsv
contains protein complex information:"name" "comments" "mw" "location" "reactionId" "id" "aspartate kinase / homoserine dehydrogenase" "" [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 356414.04399999994, 0.0, 0.0, 0.0, 0.0] ["c"] "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN" "ASPKINIHOMOSERDEHYDROGI-CPLX"
reconstruction/ecoli/flat/protein_half_lives.tsv
contains the half-life of proteins. Very few proteins are listed however for some reason.reconstruction/ecoli/flat/tfIds.csv
: transcription factors information:"TF" "geneId" "oneComponentId" "twoComponentId" "nonMetaboliteBindingId" "activeId" "notes" "arcA" "EG10061" "PHOSPHO-ARCA" "PHOSPHO-ARCA" "fnr" "EG10325" "FNR-4FE-4S-CPLX" "FNR-4FE-4S-CPLX" "dksA" "EG10230"
They seem to do some cool stuff.
They have also declined every one of Ciro Santilli's applications for software engineer jobs before any interview. Ciro always wondered what does it take to get an interview with them. Lilely a PhD? Oh well.
In the early days at least lots of gamedev experience was enough though: www.linkedin.com/in/charles-beattie-0695373/.
To remove and install Shimano and ISIS Drive splined 20-tooth bottom bracket cups.
Bought: 2020-11-07. Also getting a park Tool PAW-12 adjustable wrench to use with it.
Circa 2023, the feed is an unbearable list of stupid suggestions, never-ending idiotic memes, and you just end up missing posts you actually care about from people you actually follow.
- www.komando.com/social-media/facebook-customized-feeds/847500/
- www.quora.com/How-do-I-limit-my-news-feed-to-friends-only-on-Facebook
- www.youtube.com/watch?v=SIA8VydqiNQ OK they split their feed into multiple feeds. However on page follows www.facebook.com/?filter=pages&sk=h_chr you very quickly reach:the history doesn't go back even a few days as of November 2023! And the favorites feed www.facebook.com/?filter=favorites&sk=h_chr is more explicit on their ridiculous timing:
You're all caught up on Most Recent posts Check back later for more updates
OMG!You're up to date on posts from the last 3 days
This is the discrete logarithm problem where the group is a cyclic group.
In this case, the problem becomes equivalent to reversing modular exponentiation.
This computational problem forms the basis for Diffie-Hellman key exchange, because modular exponentiation can be efficiently computed, but no known way exists to efficiently compute the reverse function.
Can a smartphone's PIN or password be brute-forced in an offline attack? Updated 2025-01-10 +Created 1970-01-01
Ciro Santilli has a hard time understanding why this is possible, e.g. many people use short 4 digit pins, or a short swipe pattern. Why can't this be cracked easily offline?
Unlisted articles are being shown, click here to show only listed articles.