React error by Ciro Santilli 35 Updated +Created
Magnetic quantum number by Ciro Santilli 35 Updated +Created
Fixed quantum angular momentum in a given direction.
Can range between .
E.g. consider gallium which is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1:
The z component of the quantum angular momentum is simply:
so e.g. again for gallium:
Note that this direction is arbitrary, since for a fixed azimuthal quantum number (and therefore fixed total angular momentum), we can only know one direction for sure. is normally used by convention.
NumPy by Ciro Santilli 35 Updated +Created
The people who work on this will go straight to heaven, no questions asked.
Prokaryotic large ribosome subunit by Ciro Santilli 35 Updated +Created
Jupiter by Ciro Santilli 35 Updated +Created
Dwarf planet in the solar system by Ciro Santilli 35 Updated +Created
Photomultiplier tube by Ciro Santilli 35 Updated +Created
Can be used to detect single photons.
It uses the photoelectric effect multiple times to produce a chain reaction. In particular, as mentioned at youtu.be/5V8VCFkAd0A?t=74 from Video 1. "Using a Photomultiplier to Detect single photons by Huygens Optics" this means that the device has a lowest sensitive light frequency, beyond which photons don't have enough energy to eject any electrons.
Video 1. . Source. 2024. Wow this dude is amazing as usual. Unfortunately he's not using a single photon source, just an LED.
Loxbridge by Ciro Santilli 35 Updated +Created
Universal Quantum by Ciro Santilli 35 Updated +Created
As of 2021, their location is a small business park in Haywards Heath, about 15 minutes north of Brighton[ref]
Funding rounds:
Co-founders:
Homepage says only needs cooling to 70 K. So it doesn't work with liquid nitrogen which is 77 K?
Homepage points to foundational paper: www.science.org/doi/10.1126/sciadv.1601540
Video 1.
Universal Quantum emerges out of stealth by University of Sussex (2020)
Source. Explains that a more "traditional" trapped ion quantum computer would user "pairs of lasers", which would require a lot of lasers. Their approach is to try and do it by applying voltages to a microchip instead.
Video 2.
Quantum Computing webinar with Sebastian Weidt by Green Lemon Company (2020)
Source. The sound quality is to bad to stop and listen to, but it presumaby shows the coding office in the background.
Video 3.
Fireside Chat with with Sebastian Weidt by Startup Grind Brighton (2022)
Source. Very basic target audience:
Atom Computing by Ciro Santilli 35 Updated +Created
These people are cool.
They use optical tweezers to place individual atoms floating in midair, and then do stuff to entangle their nuclear spins.
sha1sum by Ciro Santilli 35 Updated +Created
SuperTuxKart by Ciro Santilli 35 Updated +Created
It is a shame, but this game just doesn't feel good. The controls are just not as snappy as Mario Kart 64, the levels are too wide which limits player interaction, and the weapons feel clumsy weak and unexciting. These are all aspects that the closed source smashkarts.io gets pretty well.
Lost Horse LLC by Ciro Santilli 35 Updated +Created
www.irishtimes.com/life-and-style/people/mackenzie-scott-how-the-former-mrs-bezos-became-a-philanthropist-like-no-other-1.4850049 MacKenzie Scott: How the former Mrs Bezos became a philanthropist like no other (2020) has some good mentions:
But as Scott's fame for giving away money has grown, so too has the deluge of appeals for gifts from strangers and old friends alike. That clamour may have driven Scott's already discreet operation further underground, with recent philanthropic announcements akin to sudden lightning bolts for unsuspecting recipients.
Market liquidity by Ciro Santilli 35 Updated +Created
Lamb-Retherford experiment by Ciro Santilli 35 Updated +Created
Published as "Fine Structure of the Hydrogen Atom by a Microwave Method" by Willis Lamb and Robert Retherford (1947) on Physical Review. This one actually has open accesses as of 2021, miracle! journals.aps.org/pr/pdf/10.1103/PhysRev.72.241
Microwave technology was developed in World War II for radar, notably at the MIT Radiation Laboratory. Before that, people were using much higher frequencies such as the visible spectrum. But to detect small energy differences, you need to look into longer wavelengths.
This experiment was fundamental to the development of quantum electrodynamics. As mentioned at Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "Shrinking the infinities", before the experiment, people already knew that trying to add electromagnetism to the Dirac equation led to infinities using previous methods, and something needed to change urgently. However for the first time now the theorists had one precise number to try and hack their formulas to reach, not just a philosophical debate about infinities, and this led to major breakthroughs. The same book also describes the experiment briefly as:
Willis Lamb had just shined a beam of microwaves onto a hot wisp of hydrogen blowing from an oven.
It is two pages and a half long.
They were at Columbia University in the Columbia Radiation Laboratory. Robert was Willis' graduate student.
Previous less experiments had already hinted at this effect, but they were too imprecise to be sure.
Server-side rendering by Ciro Santilli 35 Updated +Created
Hydrogen line by Ciro Santilli 35 Updated +Created
21 cm is very long and very low energy, because he energy split is very small!
Compare it e.g. with the hydrogen 1-2 spectral line which is 121.6 nm!

Unlisted articles are being shown, click here to show only listed articles.