David Tong's 2009 Quantum Field Theory lectures at the Perimeter Institute Updated 2025-01-01 +Created 1970-01-01
Lecture notes: Quantum Field Theory lecture notes by David Tong (2007).
By David Tong.
14 1 hours 20 minute lectures.
The video resolution is extremely low, with images glued as he moves away from what he wrote :-) The beauty of the early Internet.
Originally it was likely created to study constrained mechanical systems where you want to use some "custom convenient" variables to parametrize things instead of global x, y, z. Classical examples that you must have in mind include:
- compound Atwood machine. Here, we can use the coordinates as the heights of masses relative to the axles rather than absolute heights relative to the ground
- double pendulum, using two angles. The Lagrangian approach is simpler than using Newton's laws
- pendulum, use angle instead of x/y
- two-body problem, use the distance between the bodieslagrangian mechanics lectures by Michel van Biezen (2017) is a good starting point.
When doing lagrangian mechanics, we just lump together all generalized coordinates into a single vector that maps time to the full state:where each component can be anything, either the x/y/z coordinates relative to the ground of different particles, or angles, or nay other crazy thing we want.
Then, the stationary action principle says that the actual path taken obeys the Euler-Lagrange equation:This produces a system of partial differential equations with:
- equations
- unknown functions
- at most second order derivatives of . Those appear because of the chain rule on the second term.
The mixture of so many derivatives is a bit mind mending, so we can clarify them a bit further. At:the is just identifying which argument of the Lagrangian we are differentiating by: the i-th according to the order of our definition of the Lagrangian. It is not the actual function, just a mnemonic.
Then at:
- the part is just like the previous term, just identifies the argument with index ( because we have the non derivative arguments)
- after the partial derivative is taken and returns a new function , then the multivariable chain rule comes in and expands everything into terms
However, people later noticed that the Lagrangian had some nice properties related to Lie group continuous symmetries.
Basically it seems that the easiest way to come up with new quantum field theory models is to first find the Lagrangian, and then derive the equations of motion from them.
For every continuous symmetry in the system (modelled by a Lie group), there is a corresponding conservation law: local symmetries of the Lagrangian imply conserved currents.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
And partly due to the above observations, it was noticed that the easiest way to describe the fundamental laws of particle physics and make calculations with them is to first formulate their Lagrangian somehow: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s.
TODO advantages:
- physics.stackexchange.com/questions/254266/advantages-of-lagrangian-mechanics-over-newtonian-mechanics on Physics Stack Exchange, fucking closed question...
- www.quora.com/Why-was-Lagrangian-formalism-needed-in-the-presence-of-Newtonian-formalism
- www.researchgate.net/post/What_is_the_advantage_of_Lagrangian_formalism_over_Hamiltonian_formalism_in_QFT
Bibliography:
- www.physics.usu.edu/torre/6010_Fall_2010/Lectures.html Physics 6010 Classical Mechanics lecture notes by Charles Torre from Utah State University published on 2010,
- Classical physics only. The last lecture: www.physics.usu.edu/torre/6010_Fall_2010/Lectures/12.pdf mentions Lie algebra more or less briefly.
- www.damtp.cam.ac.uk/user/tong/dynamics/two.pdf by David Tong
This is a well known though experiment, which Richard Feynman used to emphasize
- infinite wire with balanced positive and negative charges, so no net charge, but a net magnetic field
- a single charge moves parallel to wire at the same speed as the electrons
In the above experiment:
- from the wire frame, the charge feels electromagnetic force, because it is moving and there is a magnetic field
- from the single charge frame, there is still magnetic field (positive charges are moving), but the body itself is not moving, so there is no force!
The solution to this problem is length contraction: the positive charges are length contracted and the moving electrons aren't, and therefore they are denser and therefore there is an effective charge from that frame.
This is also mentioned at David Tong www.damtp.cam.ac.uk/user/tong/em/el4.pdf (archive) "David Tong: Lectures on Electromagnetism - 5. Electromagnetism and Relativity" "5.2.1 Magnetism and Relativity".
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
E.g. in QED, one for the electron and one for the photon: physics.stackexchange.com/questions/166709/are-electron-fields-and-photon-fields-part-of-the-same-field-in-qed.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
- deriving the Lagrangians of the Standard Model: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s. This is the easier part, since the lagrangians themselves can be understood with not very advanced mathematics, and derived beautifully from symmetry constraints
- the qantization of fields. This is the hard part Ciro Santilli is unable to understand, TODO mathematical formulation of quantum field theory.
There appear to be two main equivalent formulations of quantum field theory:
Author: David Tong.
Number of pages circa 2021: 155.
It should also be noted that those notes are still being updated circa 2020 much after original publication. But without Git to track the LaTeX, it is hard to be sure how much. We'll get there one day, one day.
Some quotes self describing the work:
- Perhaps for this reason Ciro Santilli was not able to get as much as he'd out of those notes either. This is not to say that the notes are bad, just not what Ciro needed, much like P&S:This is a very clear and comprehensive book, covering everything in this course at the right level. To a large extent, our course will follow the first section of this book.
In this course we will not discuss path integral methods, and focus instead on canonical quantization.
A follow up course in the University of Cambridge seems to be the "Advanced QFT course" (AQFT, Quantum field theory II) by David Skinner: www.damtp.cam.ac.uk/user/dbs26/AQFT.html
TODO why is it so hard to find anything non perturbative :-(
- www.youtube.com/channel/UCPHFUHiwbpMqC8ONxEICCiQ NanoNebula using raw Perl PDFL en.wikipedia.org/wiki/Perl_Data_Language (the Perl NumPy)
- www.youtube.com/watch?v=9TJe1Pr5c9Q "Interplay of Quantum Electrodynamics and Quantum Chromodynamics in the Nontrivial Vacuum" by CSSM Visualisation (2019)
On a quantum computer...:
- www.cornell.edu/video/john-preskill-simulating-quantum-field-theory-with-quantum-computer Simulating Quantum Field Theory with a Quantum Computer by John Preskill (2019)
- www.youtube.com/watch?v=Lln-C21u0U8 Quantum Simulation from Quantum Chemistry to Quantum Field Theory by Peter Love (2019)