BioCyc promoter database Updated +Created
E. Coli K-12 MG1655 gene thrL Updated +Created
The first gene in the E. Coli K-12 MG1655 genome. Remember however that bacterial chromosome is circular, so being the first doesn't mean much, how the choice was made: Section "E. Coli genome starting point".
At only 65 bp, this gene is quite small and boring. For a more interesting gene, have a look at the next gene, e. Coli K-12 MG1655 gene thrA.
Does something to do with threonine.
This is the first in the sequence thrL, thrA, thrB, thrC. This type of naming convention is quite common on related adjacent proteins, all of which must be getting transcribed into a single RNA by the same promoter. As mentioned in the analysis of the KEGG entry for e. Coli K-12 MG1655 gene thrA, those A, B and C are actually directly functionally linked in a direct metabolic pathway.
We can see that thrL, A, B, and C are in the same transcription unit by browsing the list of promoter at: biocyc.org/group?id=:ALL-PROMOTERS&orgid=ECOLI. By finding the first one by position we reach; biocyc.org/ECOLI/NEW-IMAGE?object=TU0-42486.
E. Coli Whole Cell Model by Covert Lab Updated +Created
github.com/CovertLab/WholeCellEcoliRelease is a whole cell simulation model created by Covert Lab and other collaborators.
The project is written in Python, hurray! But according to te README, it seems to be the use a code drop model with on-request access to master, very meh, asked rationale on GitHub discussion, and they confirmed as expected that it is to:
  • to prevent their publication ideas from being stolen. Who would steal publication ideas with public proof in an issue tracker without crediting original authors?
  • to prevent noise from non collaborators. They do only get like 2 issues as year though, people forget that it is legal to ignore other people :-)
Oh well.
The project is a followup to the earlier M. genitalium whole cell model by Covert lab which modelled Mycoplasma genitalium. E. Coli has 8x more genes (500 vs 4k), but it the undisputed bacterial model organism and as such has been studied much more thoroughly. It also reproduces faster than Mycoplasma (20 minutes vs a few hours), which is a huge advantages for validation/exploratory experiments.
The project has a partial dependency on the proprietary optimization software CPLEX which is freeware, for students, not sure what it is used for exactly, from the comment in the requirements.txt the dependency is only partial.
This project makes Ciro Santilli think of the E. Coli as an optimization problem. Given such external nutrient/temperature condition, which DNA sequence makes the cell grow the fastest? Balancing metabolites feels like designing a Factorio speedrun.
There is one major thing missing thing in the current model: promoters/transcription factor interactions are not modelled due to lack/low quality of experimental data: github.com/CovertLab/WholeCellEcoliRelease/issues/21. They just have a magic direct "transcription factor to gene" relationship, encoded at reconstruction/ecoli/flat/foldChanges.tsv in terms of type "if this is present, such protein is expressed 10x more". Transcription units are not implemented at all it appears.
Everything in this section refers to version 7e4cc9e57de76752df0f4e32eca95fb653ea64e4, the code drop from November 2020, and was tested on Ubuntu 21.04 with a docker install of docker.pkg.github.com/covertlab/wholecellecolirelease/wcm-full with image id 502c3e604265, unless otherwise noted.
Source code overview Updated +Created
The key model database is located in the source code at reconstruction/ecoli/flat.
Let's try to understand some interesting looking, with a special focus on our understanding of the tiny E. Coli K-12 MG1655 operon thrLABC part of the metabolism, which we have well understood at Section "E. Coli K-12 MG1655 operon thrLABC".
We'll realize that a lot of data and IDs come from/match BioCyc quite closely.
  • reconstruction/ecoli/flat/compartments.tsv contains cellular compartment information:
    "abbrev" "id"
    "n" "CCO-BAC-NUCLEOID"
    "j" "CCO-CELL-PROJECTION"
    "w" "CCO-CW-BAC-NEG"
    "c" "CCO-CYTOSOL"
    "e" "CCO-EXTRACELLULAR"
    "m" "CCO-MEMBRANE"
    "o" "CCO-OUTER-MEM"
    "p" "CCO-PERI-BAC"
    "l" "CCO-PILUS"
    "i" "CCO-PM-BAC-NEG"
  • reconstruction/ecoli/flat/promoters.tsv contains promoter information. Simple file, sample lines:
    "position" "direction" "id" "name"
    148 "+" "PM00249" "thrLp"
    corresponds to E. Coli K-12 MG1655 promoter thrLp, which starts as position 148.
  • reconstruction/ecoli/flat/proteins.tsv contains protein information. Sample line corresponding to e. Coli K-12 MG1655 gene thrA:
    "aaCount" "name" "seq" "comments" "codingRnaSeq" "mw" "location" "rnaId" "id" "geneId"
    [91, 46, 38, 44, 12, 53, 30, 63, 14, 46, 89, 34, 23, 30, 29, 51, 34, 4, 20, 0, 69] "ThrA" "MRVL..." "Location information from Ecocyc dump." "AUGCGAGUGUUG..." [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 89103.51099999998, 0.0, 0.0, 0.0, 0.0] ["c"] "EG10998_RNA" "ASPKINIHOMOSERDEHYDROGI-MONOMER" "EG10998"
    so we understand that:
    • aaCount: amino acid count, how many of each of the 20 proteinogenic amino acid are there
    • seq: full sequence, using the single letter abbreviation of the proteinogenic amino acids
    • mw; molecular weight? The 11 components appear to be given at reconstruction/ecoli/flat/scripts/unifyBulkFiles.py:
      molecular_weight_keys = [
        '23srRNA',
        '16srRNA',
        '5srRNA',
        'tRNA',
        'mRNA',
        'miscRNA',
        'protein',
        'metabolite',
        'water',
        'DNA',
        'RNA' # nonspecific RNA
        ]
      so they simply classify the weight? Presumably this exists for complexes that have multiple classes?
    • location: cell compartment where the protein is present, c defined at reconstruction/ecoli/flat/compartments.tsv as cytoplasm, as expected for something that will make an amino acid
  • reconstruction/ecoli/flat/rnas.tsv: TODO vs transcriptionUnits.tsv. Sample lines:
    "halfLife" "name" "seq" "type" "modifiedForms" "monomerId" "comments" "mw" "location" "ntCount" "id" "geneId" "microarray expression"
    174.0 "ThrA [RNA]" "AUGCGAGUGUUG..." "mRNA" [] "ASPKINIHOMOSERDEHYDROGI-MONOMER" "" [0.0, 0.0, 0.0, 0.0, 790935.00399999996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ["c"] [553, 615, 692, 603] "EG10998_RNA" "EG10998" 0.0005264904
    • halfLife: half-life
    • mw: molecular weight, same as in reconstruction/ecoli/flat/proteins.tsv. This molecule only have weight in the mRNA class, as expected, as it just codes for a protein
    • location: same as in reconstruction/ecoli/flat/proteins.tsv
    • ntCount: nucleotide count for each of the ATGC
    • microarray expression: presumably refers to DNA microarray for gene expression profiling, but what measure exactly?
  • reconstruction/ecoli/flat/sequence.fasta: FASTA DNA sequence, first two lines:
    >E. coli K-12 MG1655 U00096.2 (1 to 4639675 = 4639675 bp)
    AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTG
  • reconstruction/ecoli/flat/transcriptionUnits.tsv: transcription units. We can observe for example the two different transcription units of the E. Coli K-12 MG1655 operon thrLABC in the lines:
    "expression_rate" "direction" "right" "terminator_id"  "name"    "promoter_id" "degradation_rate" "id"       "gene_id"                                   "left"
    0.0               "f"         310     ["TERM0-1059"]   "thrL"    "PM00249"     0.198905992329492 "TU0-42486" ["EG11277"]                                  148
    657.057317358791  "f"         5022    ["TERM_WC-2174"] "thrLABC" "PM00249"     0.231049060186648 "TU00178"   ["EG10998", "EG10999", "EG11000", "EG11277"] 148
  • reconstruction/ecoli/flat/genes.tsv
    "length" "name"                      "seq"             "rnaId"      "coordinate" "direction" "symbol" "type" "id"      "monomerId"
    66       "thr operon leader peptide" "ATGAAACGCATT..." "EG11277_RNA" 189         "+"         "thrL"   "mRNA" "EG11277" "EG11277-MONOMER"
    2463     "ThrA"                      "ATGCGAGTGTTG"    "EG10998_RNA" 336         "+"         "thrA"   "mRNA" "EG10998" "ASPKINIHOMOSERDEHYDROGI-MONOMER"
  • reconstruction/ecoli/flat/metabolites.tsv contains metabolite information. Sample lines:
    "id"                       "mw7.2" "location"
    "HOMO-SER"                 119.12  ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
    "L-ASPARTATE-SEMIALDEHYDE" 117.104 ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
    In the case of the enzyme thrA, one of the two reactions it catalyzes is "L-aspartate 4-semialdehyde" into "Homoserine".
    Starting from the enzyme page: biocyc.org/gene?orgid=ECOLI&id=EG10998 we reach the reaction page: biocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=HOMOSERDEHYDROG-RXN which has reaction ID HOMOSERDEHYDROG-RXN, and that page which clarifies the IDs:
    so these are the compounds that we care about.
  • reconstruction/ecoli/flat/reactions.tsv contains chemical reaction information. Sample lines:
    "reaction id" "stoichiometry" "is reversible" "catalyzed by"
    
    "HOMOSERDEHYDROG-RXN-HOMO-SER/NAD//L-ASPARTATE-SEMIALDEHYDE/NADH/PROTON.51."
      {"NADH[c]": -1, "PROTON[c]": -1, "HOMO-SER[c]": 1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "NAD[c]": 1}
      false
      ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
    
    "HOMOSERDEHYDROG-RXN-HOMO-SER/NADP//L-ASPARTATE-SEMIALDEHYDE/NADPH/PROTON.53."
      {"NADPH[c]": -1, "NADP[c]": 1, "PROTON[c]": -1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "HOMO-SER[c]": 1
      false
      ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
    • catalized by: here we see ASPKINIHOMOSERDEHYDROGI-CPLX, which we can guess is a protein complex made out of ASPKINIHOMOSERDEHYDROGI-MONOMER, which is the ID for the thrA we care about! This is confirmed in complexationReactions.tsv.
  • reconstruction/ecoli/flat/complexationReactions.tsv contains information about chemical reactions that produce protein complexes:
    "process" "stoichiometry" "id" "dir"
    "complexation"
      [
        {
          "molecule": "ASPKINIHOMOSERDEHYDROGI-CPLX",
          "coeff": 1,
          "type": "proteincomplex",
          "location": "c",
          "form": "mature"
        },
        {
          "molecule": "ASPKINIHOMOSERDEHYDROGI-MONOMER",
          "coeff": -4,
          "type": "proteinmonomer",
          "location": "c",
          "form": "mature"
        }
      ]
    "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN"
    1
    The coeff is how many monomers need to get together for form the final complex. This can be seen from the Summary section of ecocyc.org/gene?orgid=ECOLI&id=ASPKINIHOMOSERDEHYDROGI-MONOMER:
    Aspartate kinase I / homoserine dehydrogenase I comprises a dimer of ThrA dimers. Although the dimeric form is catalytically active, the binding equilibrium dramatically favors the tetrameric form. The aspartate kinase and homoserine dehydrogenase activities of each ThrA monomer are catalyzed by independent domains connected by a linker region.
    Fantastic literature summary! Can't find that in database form there however.
  • reconstruction/ecoli/flat/proteinComplexes.tsv contains protein complex information:
    "name" "comments" "mw" "location" "reactionId" "id"
    "aspartate kinase / homoserine dehydrogenase"
    ""
    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 356414.04399999994, 0.0, 0.0, 0.0, 0.0]
    ["c"]
    "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN"
    "ASPKINIHOMOSERDEHYDROGI-CPLX"
  • reconstruction/ecoli/flat/protein_half_lives.tsv contains the half-life of proteins. Very few proteins are listed however for some reason.
  • reconstruction/ecoli/flat/tfIds.csv: transcription factors information:
    "TF"   "geneId"  "oneComponentId"  "twoComponentId" "nonMetaboliteBindingId" "activeId" "notes"
    "arcA" "EG10061" "PHOSPHO-ARCA"    "PHOSPHO-ARCA"
    "fnr"  "EG10325" "FNR-4FE-4S-CPLX" "FNR-4FE-4S-CPLX"
    "dksA" "EG10230"
Operon Updated +Created
Sequence of genes under a single promoter. For an example, see E. Coli K-12 MG1655 operon thrLABC.
A single operon may produce multiple different transcription units depending on certain conditions, see: operon vs transcription unit.
Operon vs transcription unit Updated +Created
That single operon can produce two different mRNA transcription units:
The reason for this appears to be that there is a rho-independent termination region after thrL. But then under certain conditions, that must get innactivated, and then the thrLABC is produced instead.
Polycistronic mRNA Updated +Created