Exact diagonalization is a numerical technique used in quantum mechanics and condensed matter physics to solve quantum many-body problems. The goal is to find the eigenvalues and eigenstates of a Hamiltonian, which describes the energy and dynamics of a quantum system. This method is particularly useful for systems with a finite number of degrees of freedom, such as spin systems or small lattice models.
FFKM stands for "Perfluoroelastomer," which is a type of synthetic rubber that is highly resistant to a wide range of chemicals and has excellent thermal stability. FFKM is known for its superior performance in extreme conditions, including high temperatures, aggressive chemicals, and harsh environments. The structure of FFKM incorporates fluorine atoms, which contribute to its chemical resistance and make it suitable for applications in industries such as oil and gas, pharmaceuticals, semiconductor manufacturing, and aerospace.
Ferroelectric ceramics are a class of dielectric materials that exhibit a spontaneous electric polarization that can be reversed by the application of an external electric field. This property is known as ferroelectricity, which is analogous to ferromagnetism in magnetic materials. The term "ferroelectric" comes from the similarity in behavior to ferromagnetic materials, although the origin of the name does not imply any direct connection to iron.
Fiber simulation typically refers to the use of computational techniques to model and analyze the behavior of fibers in various contexts, such as in materials science, textile engineering, and structural analysis. The term can cover a range of applications, including: 1. **Textile Engineering**: Simulating the physical properties of textile fibers, including their behavior under stress, strain, and temperature changes. This can involve modeling yarn production processes, fabric drape, and wear characteristics.
Geometallurgy is an interdisciplinary approach that combines geology, metallurgy, and mining engineering to improve the efficiency and effectiveness of the mining and processing of mineral resources. The primary goal of geometallurgy is to understand the spatial variability of ore characteristics and how these variations affect the extraction and processing of metals. Key components of geometallurgy include: 1. **Geological Mapping**: Detailed geological surveys and mapping are conducted to identify and characterize ore deposits.
The Goodman relation, also known as the Goodman diagram or Goodman fatigue criterion, is a graphical representation used in mechanical engineering and materials science to predict the fatigue life of materials under varying levels of mean and alternating stress. It provides a framework for understanding how different loading conditions affect the fatigue strength of materials.
Grain growth refers to the increase in size of crystallites (grains) in a polycrystalline material during processes such as heat treatment or annealing. This phenomenon occurs when the temperature of a material is elevated, leading to a reduction in the total surface energy of the material. In a polycrystalline solid, grains are separated by interfaces called grain boundaries.
"Green strength" typically refers to the strength or integrity of a material or substance in its uncured or "green" state, particularly in the context of ceramics, polymers, and composites. This term is most commonly used in manufacturing and material science, particularly when discussing processes such as molding or forming before a material has undergone complete curing or hardening.
Hankinson's equation is a semi-empirical formula used to estimate the shear strength of soils, particularly in the context of site investigation and geotechnical engineering. The equation takes into account various factors that influence soil behavior, such as confining pressure and soil properties.
A Kelvin-Voigt material, also known as a Kelvin-Voigt solid, is a type of viscoelastic material characterized by its combination of elastic and viscous behavior. It is typically modeled as a spring and dashpot in parallel. In the Kelvin-Voigt model: - **Spring (Elastic Element)**: Represents the material's ability to recover its shape after a stress is removed. It obeys Hooke's law, meaning the stress is proportional to strain.
The Kopp–Etchells effect refers to a phenomenon observed in the field of materials science and condensed matter physics, particularly related to the behavior of certain magnetic materials. It describes the interaction between magnetic fields and the electronic states of materials, leading to unique changes in their physical properties, such as electrical conductivity or magnetic susceptibility.
Landolt–Börnstein is a comprehensive series of reference works that provide data on the physical and chemical properties of materials. It is published by Springer and is part of the "New Series" of Landolt–Börnstein, which has its roots in earlier works initiated by Hans Landolt and Richard Börnstein in the early 20th century.
The Hume-Rothery rules are guidelines used to predict the solubility limits of one metal in another, particularly in alloy formation. These rules help in understanding the conditions under which two metals can mix or form solid solutions. The Hume-Rothery rules are based on several criteria, which can be summarized as follows: 1. **Atomic Size Factor**: The atomic radii of the two metals should not differ by more than about 15%.
Hydrogen-bonded organic frameworks (HOFs) are a class of materials characterized by their unique structure, which is stabilized primarily by hydrogen bonding interactions between organic molecules. Unlike traditional covalent or ionic bonds, hydrogen bonds are relatively weak, but they can collectively provide significant stability and structural integrity to the framework.
Hydrogenography is not a widely recognized term in scientific literature or common usage as of my last update in October 2023. However, it appears to be a blend of the words "hydrogen" and "photography," often associated with techniques or methods involving the visualization or analysis of hydrogen in various contexts, particularly in scientific or industrial settings. If the term has evolved or gained specific meaning after 2023, it could relate to a particular technique or field of study.
The term "indentation size effect" refers to the phenomenon observed in materials, especially in the field of materials science and mechanical engineering, where the hardness and mechanical properties of a material depend on the size of the indentation made by a hard indenter. This effect is particularly significant in small-scale testing methods such as nanoindentation.
Industrial computed tomography (ICT) is a non-destructive testing (NDT) technique that utilizes X-rays or gamma rays to create detailed 3D images of the internal structures of an object. This technology is widely used in various industries, including manufacturing, aerospace, automotive, and medical devices, to inspect, analyze, and evaluate the integrity of components and materials without causing any damage to them.
The Institut für Kunststoffverarbeitung (Institute for Plastics Processing), often abbreviated as IKV, is a research institution in Germany that specializes in the study and advancement of plastics processing technologies. Located in Aachen, the IKV is part of the RWTH Aachen University and serves as a hub for research, development, and education in the field of plastics engineering. The institute focuses on various aspects of plastics processing, including injection molding, extrusion, thermoforming, and additive manufacturing, among others.
Integrated Computational Materials Engineering (ICME) is an interdisciplinary approach that combines materials science, engineering, and computational modeling to design and optimize materials and their processing. The goal of ICME is to achieve a more efficient and innovative materials development process by integrating simulations and computational techniques at various stages of the materials lifecycle, from design to manufacturing to performance assessment.
Magnetorheological elastomers (MREs) are advanced materials that exhibit the ability to change their mechanical properties in response to an applied magnetic field. They are a type of smart material that combines traditional elastomers (like rubber) with magnetorheological (MR) particles, typically made of magnetically susceptible materials such as iron or cobalt.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact