There is a Turing machine that halts for every member of the language with the answer yes, but does not necessarily halt for non-members.
R (complexity) by Ciro Santilli 37 Updated 2025-07-16
Set of all decision problems solvable by a Turing machine, i.e. that decide if a string belongs to a recursive language.
Undecidable problem by Ciro Santilli 37 Updated 2025-07-16
Is a decision problem of determining if something belongs to a non-recursive language.
Or in other words: there is no Turing machine that always halts for every input with the yes/no output.
Every undecidable problem must obviously have an infinite number of "possibilities of stuff you can try": if there is only a finite number, then you can brute-force it.
Mortal matrix problem by Ciro Santilli 37 Updated 2025-07-16
One of the most simple to state undecidable problems.
The reason that it is undecidable is that you can repeat each matrix any number of times, so there isn't a finite number of possibilities to check.
Computable number by Ciro Santilli 37 Updated 2025-07-16
There are only boring examples of taking an uncomputable language and converting it into a number?
After removing it:
  • the black tape used pulled out the paint in parts of the wall, and even worse small bits of plaster on some corners
  • the sticky from the blinds bits also pulled out a bit of plaster
Of course, we already knew that minimal plaster work would be needed from the start, since we have to hammer two small nails into the wall. But that level of damage might have been easily dealt with by a non-professional tenant himself. But the level I had was a bit more than I felt I should handle myself.
Figure 1.
Total Blackout Cassette Roller Blind wall damage.
Source.
Decision problem by Ciro Santilli 37 Updated 2025-07-16
Computational problem where the solution is either yes or no.
When there are more than two possible answers, it is called a function problem.
Decision problems come up often in computer science because many important problems are often stated in terms of "decide if a given string belongs to given formal language".
Turing machine decider by Ciro Santilli 37 Updated 2025-07-16
A Turing machine decider is a program that decides if one or more Turing machines halts of not.
Of course, because what we know about the halting problem, there cannot exist a single decider that decides all Turing machines.
E.g. The Busy Beaver Challenge has a set of deciders clearly published, which decide a large part of BB(5). Their proposed deciders are listed at: discuss.bbchallenge.org/c/deciders/5 and actually applied ones at: bbchallenge.org.
But there are deciders that can decide large classes of turing machines.
Many (all/most?) deciders are based on simulation of machines with arbitrary cutoff hyperparameters, e.g. the cutoff space/time of a Turing machine cycler decider.
The simplest and most obvious example is the Turing machine cycler decider
Cycler Turing machine by Ciro Santilli 37 Updated 2025-07-16
These are very simple, they just check for exact state repetitions, which obviously imply that they will run forever.
Unfortunately, cyclers may need to run through an initial setup phase before reaching the initial cycle point, which is not very elegant.
Also, we have no way of knowing the initial setup length of the actual cycle length, so we just need an arbitrary cutoff value.
And unfortunately, this can lead to misses, e.g. Skelet machine #1, a 5 state machine, has a (translated) cycle that starts at around 50-200M steps, and takes 8 trillion steps to repeat.
Like a cycler, but the cycle starts at an offset.
To see infinity, we check that if the machine only goes left N squares until reaching the repetition, then repetition must only be N squares long.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact