Rebecca Thompson could refer to different individuals depending on the context, as it is a relatively common name. Without additional context, it's difficult to determine exactly who you might be referring to. For instance, Rebecca Thompson could be a professional in various fields such as literature, academia, science, or even a character in a book or film.
As of my last update, there is no widely recognized public figure, event, or concept specifically named "Rhonda Stroud." It's possible that Rhonda Stroud could refer to a private individual or a less-known figure in specific fields such as academia, business, or local news. If you can provide more context or details, I might be able to assist you better. Otherwise, please check the latest sources for the most current information.
Richard A. Webb could refer to various individuals, as it is a relatively common name. Without additional context, such as a specific field (like science, literature, academia, etc.) or notable works, it is difficult to pinpoint exactly who you might be referring to. If you provide more details or context surrounding Richard A.
One-time pad by Ciro Santilli 37 Updated 2025-07-16
The only perfect cryptosystem!
The problem is that you need a shared key as large as the message.
Systems like advanced Encryption Standard allow us to encrypt things larger than the key, but the tradeoff is that they could be possibly broken, as don't have any provably secure symmetric-key algorithms as of 2020.
Ring signature by Ciro Santilli 37 Updated 2025-07-16
Used for example:
RSA (cryptosystem) by Ciro Santilli 37 Updated 2025-07-16
Based on the fact that we don't have a P algorithm for integer factorization as of 2020. But nor proof that one does not exist!
The private key is made of two randomly generated prime numbers: and . How such large primes are found: how large primes are found for RSA.
The public key is made of:
Given a plaintext message m, the encrypted ciphertext version is:
c = m^e mod n
This operation is called modular exponentiation can be calculated efficiently with the Extended Euclidean algorithm.
The inverse operation of finding the private m from the public c, e and is however believed to be a hard problem without knowing the factors of n.
However, if we know the private p and q, we can solve the problem. As follows.
First we calculate the modular multiplicative inverse. TODO continue.
Answers suggest hat you basically pick a random large odd number, and add 2 to it until your selected primality test passes.
The prime number theorem tells us that the probability that a number between 1 and is a prime number is .
Therefore, for an N-bit integer, we only have to run the test N times on average to find a prime.
Since say, A 512-bit integer is already humongous and sufficiently large, we would only need to search 512 times on average even for such sizes, and therefore the procedure scales well.
RSA vs Diffie-Hellman by Ciro Santilli 37 Updated 2025-07-16
As its name indicates, Diffie-Hellman key exchange is a key exchange algorithm. TODO verify: this means that in order to transmit a message, both parties must first send data to one another to reach a shared secret key. For RSA on the other hand, you can just take the public key of the other party and send encrypted data to them, the receiver does not need to send you any data at any point.
Based on the fact that we don't have a P algorithm for the discrete logarithm of the cyclic group as of 2020, but we do have an efficient algorithm for modular exponentiation. But nor do we have proof that one does not exist! Living on the edge as usual for public-key cryptography.
Diffie-Hellman vs ECDH by Ciro Santilli 37 Updated 2025-07-16
ECDH has smaller keys. youtu.be/gAtBM06xwaw?t=634 mentions some interesting downsides:

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact