Elementary geometry is a branch of mathematics that deals with the properties and relationships of basic geometric figures such as points, lines, angles, triangles, circles, and polygons. It lays the foundation for more advanced geometrical concepts and is typically one of the first areas of geometry studied in school. Key concepts in elementary geometry include: 1. **Points and Lines**: The fundamental building blocks of geometry.
"Ombak tujuh," which translates to "seven waves" in English, is a traditional concept found in Indonesian culture, particularly associated with the island of Bali. It typically refers to a specific natural phenomenon where a series of seven waves occur in succession. In Balinese culture, these waves are often linked to various aspects of spirituality and rituals. For example, they may play a role in ceremonial practices or signify important moments in life.
Pascual Jordan by Ciro Santilli 37 Updated 2025-07-16
One of the leading figures of the early development of quantum electrodynamics.
Paul Dirac by Ciro Santilli 37 Updated 2025-07-16
Eccentric nerdy slow speaking physicist mostly based in University of Cambridge.
Created the Dirac equation, what else do you need to know?!
QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) chapter 1.3 "P.A.M. Dirac and the Birth of Quantum Electrodynamics" quotes Dirac saying how being at high school during World War I was an advantage, since all slightly older boys were being sent to war, and so the younger kids were made advance as fast as they could through subjects. Exactly the type of thing Ciro Santilli wants to achieve with OurBigBook.com, but without the need for a world war hopefully.
Dirac was a staunch atheist having said during the Fifth Solvay Conference (1927)[ref]:
If we are honest - and scientists have to be - we must admit that religion is a jumble of false assertions, with no basis in reality. The very idea of God is a product of the human imagination. It is quite understandable why primitive people, who were so much more exposed to the overpowering forces of nature than we are today, should have personified these forces in fear and trembling. But nowadays, when we understand so many natural processes, we have no need for such solutions. I can't for the life of me see how the postulate of an Almighty God helps us in any way. What I do see is that this assumption leads to such unproductive questions as why God allows so much misery and injustice, the exploitation of the poor by the rich and all the other horrors He might have prevented. If religion is still being taught, it is by no means because its ideas still convince us, but simply because some of us want to keep the lower classes quiet. Quiet people are much easier to govern than clamorous and dissatisfied ones. They are also much easier to exploit. Religion is a kind of opium that allows a nation to lull itself into wishful dreams and so forget the injustices that are being perpetrated against the people. Hence the close alliance between those two great political forces, the State and the Church. Both need the illusion that a kindly God rewards - in heaven if not on earth - all those who have not risen up against injustice, who have done their duty quietly and uncomplainingly. That is precisely why the honest assertion that God is a mere product of the human imagination is branded as the worst of all mortal sins.
Video 1.
Paul Dirac and the religion of mathematical beauty by Royal Society (2013)
Source.
Richard Feynman by Ciro Santilli 37 Updated 2025-07-16
Some of Feynman's key characteristics are:
  • obsession with understanding the experiments well, see also Section "How to teach and learn physics"
  • when doing more mathematical stuff, analogous obsession about starting with a concrete example and then generalizing that into the theory
  • liked to teach others. At Surely You're Joking, Mr. Feynman for example he mentions that one key problem of the Institute for Advanced Study is that they didn't have to teach, and besides that making you feel useless when were not having new ideas, it is also the case that student's questions often inspire you to look again in some direction which sometimes happens to be profitable
    He hated however mentoring others one to one, because almost everyone was too stupid for him
  • interest in other natural sciences, and also random art and culture (and especially if it involves pretty women)
Some non-Physics related ones, mostly highlighted at Genius: Richard Feynman and Modern Physics by James Gleick (1994):
Even Apple thinks so according to their Think different campaign: www.feynman.com/fun/think-different/
Video 1.
Murray Gell-Mann talks about Richard Feynman's intentional anecdote creation
. Source. TODO original interviewer, date and source. Very amusing, he tells how Feynman wouldn't brush his teeth, or purposefully forget to wear jacket and tie when going to the faculty canteen where it was required and so he would use ugly emergency jacket the canteen offered to anyone who had forgotten theirs.
Video 2.
Murray Gell-Mann talks about Feynman's partons by Web of Stories (1997)
Source. Listener is likely this Geoffrey West. Key quote:
Feynman of course, as usual, put it in a form so that the common people could use it, and experimentalists all over the world now thought they understood things because Feynman had put it in such simple language for them.
Two official websites?
In 1948 he published his reworking of classical quantum mechanics in terms of the path integral formulation: journals.aps.org/rmp/abstract/10.1103/RevModPhys.20.367 Space Time Approach to nonrelativistic quantum mechanics (paywalled 2021)
Arline Greenbaum by Ciro Santilli 37 Updated 2025-07-16
Feynman's first wife, previously his local-high school-days darling. Feynman was like an reversed Stephen Hawking: he married his wife knowing that she had a serious illness, while Hawking's wife married him knowing that as well. Except that in Feynman's case, the disease outcome (tuberculosis) was much more uncertain, and she tragically died in 1945 much earlier while Feynman was at Los Alamos Laboratory, while Hawking, despite his decline, lived much longer.
Feynman first noticed Arline on the beaches on the region of his home in Far Rockaway, in the Queens, New York, near Long Beach. She lived a bit further inland in Cedarhurst. Arline was beautiful and boys competed for her, but Richard persisted, stalking her at an after-school social league sponsored by the local Synagogue and joining an art class she went to, until he eventually won it out. The region was highly Jewish, and both were from Jewish families, as also suggested by their family names.
Reading about her death e.g. at Genius: Richard Feynman and Modern Physics by James Gleick (1994) is a major tearjerker, it's just too horrible. The book mentions on chapter "The Last Springtime" that at last, during the last months of her life, after much hesitation, they did fuck in the sanatorium Arline where was staying at in Albuquerque, the nearest major city to Los Alamos (154 km), despite the risk of Feynman being infected, which would be particularly serious given that Feynman would be in constant contact with students and possibly infect others as part of his career as a researcher/teacher. Feynman would visit her on weekends by bus, and stay in Los Alamos during the week.
Arline finally died on June 16th 1945, exactly one month before the Trinity nuclear test was carried out. The atomic bombings of Hiroshima and Nagasaki were a little later on 6 and 9 of August 1945.
On one of his last trips to Oak Ridge town late 1945, after her death, Feynman walked past a shop window and saw a pretty dress. He thought to himself, "Arline would have liked that", and the reminder made him cry for the first time after Arline's death.
It is even sadder to think that the first antibiotics for tuberculosis, streptomycin, finished its first major clinical trial at around 1948, not long after her death.
Figure 1.
Richard Feynman with his first wife Arline Greenbaum
. Source. TODO date, location, original source.
Figure 2.
Richard Feynman sitting with his first wife Arline Greenbaum reading
. Source. TODO date, location, original source. Seems like in a hospital.
Video 1.
Abacus scene from the film Infinity (1996)
Source.
The film suggests that Feynman and Arline fucked a lot before the final Los Alamos fuck, that fuck story from book being only "fuck after tuberculosis diagnosis", after which they had to slow it down a bit.
This is likely true given how long they had been together for at that point. Ciro Santilli is such a pure soul for not having thought that! They were not very conservative at all those two.
Also their wedding got slowed down because there was a clause in Feynman's scholarship at Princeton University stating that the recipient could not be married, those were different times altogether.
Infinity (1996 film) by Ciro Santilli 37 Updated 2025-07-16
Good film, it feels quite realistic.
It is a shame that they tried to include some particularly interesting stories but didn't have the time to develop them, e.g. Feynman explaining to the high school interns what they were actually doing. These are referred to only in passing, and likely won't mean anything to someone who hasn't read the book.
The film settings are particularly good, and give what feels like an authentic view of the times. Particularly memorable are the Indian caves shown the film. TODO name? Possibly Puye Cliff Dwellings. Puye apparently appears prominently up on another film about Los Alamos: The Atomic city (1952). It is relatively close to Los Alamos, about 30 km away.
The title is presumably a reference to infinities in quantum field theory? Or just to the infinity of love etc.? But anyways, the infinities in quantum field theory theory come to mind if you are into this kind of stuff and is sad because that work started after the war.
https://upload.wikimedia.org/wikipedia/en/4/46/Infinity_film_poster.jpg
Video 1.
Infinity Trailer (1996)
Source.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact