The Google Story by Ciro Santilli 35 Updated +Created
Has some good mentions, but often leaves you wanting more details of how certain things happened, especially the early days stuff.
Does however paint a good picture of several notable employees, and non-search projects from the early 2000's including:
  • the cook dude
  • porn cookie guy
  • the unusual IPO process
Paints a very positive picture of the founders. It is likely true. They gave shares generously to early employees. Tried to allow the more general public to buy from IPO, by using a bidding scheme, rather than focusing on the big bankers as was usual.
The introduction mentions that Google is very interested in molecular biology and mining genetics data, much like Ciro Santilli! Can't find external references however...
Two of the most compelling areas that Google and its founders are quietly working on are the promising fields of molecular biology and genetics. Millions of genes in combination with massive amounts of biological and scientific data are an excellent match for the Google search engine, the tremendous database the company has in place, and its immense computing power. Already, Google has downloaded a map of the human genome and is working closely with biologist Dr. Craig Venter and other leaders in genetics on scientific projects that may lead to important breakthroughs in science, medicine, and health. In other words, we may be heading toward a time when people can google their own genes.
The book gives good highlight as to why Google became big: search was just an incredibly computationally intensive task. From very early days, Largey were already making up their own somewhat custom compute systems from very early days, which naturally led into Google custom hardware later on. Google just managed to pull ahead on the reinvest revenue into hardware loop, and no one ever caught them back. This feels more the case than e.g. with Amazon, which notoriously had to buy off dozens of competitors to clear the way.
Classification of closed surfaces by Ciro Santilli 35 Updated +Created
So simple!! You can either:
  • cut two holes and glue a handle. This is easy to visualize as it can be embedded in : you just get a Torus, then a double torus, and so on
  • cut a single hole and glue a Möbius strip in it. Keep in mind that this is possible because the Möbius strip has a single boundary just like the hole you just cut. This leads to another infinite family that starts with:
A handle cancels out a Möbius strip, so adding one of each does not lead to a new object.
You can glue a Mobius strip into a single hole in dimension larger than 3! And it gives you a Klein bottle!
Intuitively speaking, they can be sees as the smooth surfaces in N-dimensional space (called an embedding), such that deforming them is allowed. 4-dimensions is enough to embed cover all the cases: 3 is not enough because of the Klein bottle and family.
Orion Arm by Ciro Santilli 35 Updated +Created
Fusion energy gain factor by Ciro Santilli 35 Updated +Created
Wireshark display filter by Ciro Santilli 35 Updated +Created
ncdu by Ciro Santilli 35 Updated +Created
First World by Ciro Santilli 35 Updated +Created
Install and first run by Ciro Santilli 35 Updated +Created
At 7e4cc9e57de76752df0f4e32eca95fb653ea64e4 you basically need to use the Docker image on Ubuntu 21.04 due to pip breaking changes... (not their fault). Perhaps pyenv would solve things, but who has the patience for that?!?!
The Docker setup from README does just work. The image download is a bit tedius, as it requires you to create a GitHub API key as described in the README, but there must be reasons for that.
Once the image is downloaded, you really want to run is from the root of the source tree:
sudo docker run --name=wcm -it -v "$(pwd):/wcEcoli" docker.pkg.github.com/covertlab/wholecellecolirelease/wcm-full
This mounts the host source under /wcEcoli, so you can easily edit and view output images from your host. Once inside Docker we can compile, run the simulation, and analyze results with:
make clean compile &&
python runscripts/manual/runFitter.py &&
python runscripts/manual/runSim.py &&
python runscripts/manual/analysisVariant.py &&
python runscripts/manual/analysisCohort.py &&
python runscripts/manual/analysisMultigen.py &&
python runscripts/manual/analysisSingle.py
The meaning of each of the analysis commands is described at Section "Output overview".
As a Docker refresher, after you stop the container, e.g. by restarting your computer or running sudo docker stop wcm, you can get back into it with:
sudo docker start wcm
sudo docker run -it wcm bash
runscripts/manual/runFitter.py takes about 15 minutes, and it generates files such as reconstruction/ecoli/dataclasses/process/two_component_system.py (related) which is required to run the simulation, it is basically a part of the build.
runSim.py does the main simulation, progress output contains lines of type:
Time (s)  Dry mass     Dry mass      Protein          RNA    Small mol     Expected
              (fg)  fold change  fold change  fold change  fold change  fold change
========  ========  ===========  ===========  ===========  ===========  ===========
    0.00    403.09        1.000        1.000        1.000        1.000        1.000
    0.20    403.18        1.000        1.000        1.000        1.000        1.000
and then it ended on the Lenovo ThinkPad P51 (2017) at:
 2569.18    783.09        1.943        1.910        2.005        1.950        1.963

Simulation finished:
 - Length: 0:42:49
 - Runtime: 0:09:13
when the cell had almost doubled, and presumably divided in 42 minutes of simulated time, which could make sense compared to the 20 under optimal conditions.
Wei Dai by Ciro Santilli 35 Updated +Created
List of instant messaging software by Ciro Santilli 35 Updated +Created
Plane (geometry) by Ciro Santilli 35 Updated +Created
Casimir element by Ciro Santilli 35 Updated +Created
Andromeda Galaxy by Ciro Santilli 35 Updated +Created
First proper nearest galaxy to the Milky Way. Everything in the middle in the Local group is either a satellite of the Milky Way or Andromeda.
Many Andromeda satellite galaxies are simply numbered Andromeda II, Andromeda III and so on.
As described on Wikipedia, the observational history of Andromeda is fascinating. Little by little, people noticed that it had a different nature to many other objects observed on the sky, and the hypothesis that there are other galaxies like ours grew in force.
Part of our fascination with Andromeda is due to how similar in size and shape and close it is to the Milky Way.
It is clearly the only thing so large and so close.
Andromeda is, without a doubt, our sister galaxy.
One can't help but wonder if there is some alien looking back at us when we are looking at them through our Telescope.
Andromeda is also the furthest object from Earth that can be seen with the naked eye.[ref] Not surprising, as it literally shines with the strength of a trillion suns!
Figure 1.
Highest resolution image of Andromeda as of 2015, taken by Hubble
. Source. Source also says it was the highest resolution image every released by the Hubble. This goes to show how fascinated people are by Andromeda. And there is good reason for it.
Video 1.
Andromeda Shun from Saint Seiya performing his Nebula Chain attack
. Source. The original Japanese music actually says "Nebula Chain" in English. The Andromeda Galaxy is shown on the back, the chain appears to go all the way to it and back towards the evil guys' head. Not very relativistic, but so be it.
Video 2.
Andromeda Galaxy with only a Camera, Lens, & Tripod by Nebula Photos (2020)
Source. Good job! Gives a good idea of the low end approach.
Experimental physics by Ciro Santilli 35 Updated +Created
Experiment and theory are like the yin and yang: opposites, but one cannot exist without the other.
Ciro Santilli hates it when an expert does this!!!
If you estimate that the audience won't know the name of the concept, that's fine, do explain it as well.
But you must also give the name!!!
This also manifests itself when news outlets omit foreign names from healines, notably Chinese, but likely happens to all non-european languages too.
Greek word by Ciro Santilli 35 Updated +Created
Chinese food by Ciro Santilli 35 Updated +Created
Nightmare by Ciro Santilli 35 Updated +Created
Allen brain atlas by Ciro Santilli 35 Updated +Created
Hyperplane by Ciro Santilli 35 Updated +Created
Generalization of a plane for any number of dimensions.
Kind of the opposite of a line: the line has dimension 1, and the plane has dimension D-1.
In , both happen to coincide, a boring example of an exceptional isomorphism.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact