This only makes sense if the photon exists, there is no classical analogue, because the energy of classical waves depends only on their amplitude, not frequency.
Experiments that suggest this:
The quantum NOT gate swaps the state of and , i.e. it maps:As a result, this gate also inverts the probability of measuring 0 or 1, e.g.
- if the old probability of 0 was 0, then it becomes 1
- if the old probability of 0 was 0.2, then it becomes 0.8
This is a good and simple first example of Lie algebra to look into.
Indian classical musician by instrument by Ciro Santilli 35 Updated 2025-01-29 +Created 1970-01-01
The term "IBM Q" has been used in some promotional material as of 2020, e.g.: www.ibm.com/mysupport/s/topic/0TO50000000227pGAA/ibm-q-quantum-computing?language=en_US though the fuller form "IBM Quantum Computing" is somewhat more widely used.
They also internally named an division as "IBM Q": sg.news.yahoo.com/ibm-thinks-ready-turn-quantum-050100574.html
You need separate accounts for different countries: money.stackexchange.com/questions/73361/two-banks-in-two-countries-is-it-possible-to-have-a-unique-paypal-account it's a pain.
Paging makes it easier to compile and run two programs or threads at the same time on a single computer.
For example, when you compile two programs, the compiler does not know if they are going to be running at the same time or not.
So nothing prevents it from using the same RAM address, say,
0x1234
, to store a global variable.And thread stacks, that must be contiguous and keep growing down until they overwrite each other, are an even bigger issue!
But if two programs use the same address and run at the same time, this is obviously going to break them!
Paging solves this problem beautifully by adding one degree of indirection:
(logical) ------------> (physical)
paging
Where:
- logical addresses are what userland programs see, e.g. the contents of
rsi
inmov eax, [rsi]
.They are often called "virtual" addresses as well. - physical addresses can be though of the values that go to physical RAM index wires.But keep in mind that this is not 100% true because of further indirections such as:
Compilers don't need to worry about other programs: they just use simple logical addresses.
As far as programs are concerned, they think they can use any address between 0 and 4GiB (2^32,
FFFFFFFF
) on 32-bit systems.The OS then sets up paging so that identical logical addresses will go into different physical addresses and not overwrite each other.
This makes it much simpler to compile programs and run them at the same time.
Paging achieves that goal, and in addition:
- the switch between programs is very fast, because it is implemented by hardware
- the memory of both programs can grow and shrink as needed without too much fragmentation
- one program can never access the memory of another program, even if it wanted to.This is good both for security, and to prevent bugs in one program from crashing other programs.
Or if you like non-funny jokes:
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
- Internal cross file references done right:
- Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact