Amazon Kindle by Ciro Santilli 35 Updated +Created
Debye model by Ciro Santilli 35 Updated +Created
Wikipedia mentions that it is completely analogous to Planck's law.
Intel by Ciro Santilli 35 Updated +Created
Half-precision floating-point format by Ciro Santilli 35 Updated +Created
MAC address by Ciro Santilli 35 Updated +Created
Hardcoded and unique network addresses for every single device on Earth.
Started with 48 bits (6 bytes), usually given as 01:23:45:67:89:AB but people now encouraged to use 64-bit ones.
How they are assigned: www.quora.com/How-are-MAC-addresses-assigned Basically IEEE gives out the 3 first bytes to device manufacturers that register, this is called the organizationally unique identifier, and then each manufacturer keeps their own devices unique.
pciutils by Ciro Santilli 35 Updated +Created
Sotware project that provides lspci.
Birch and Swinnerton-Dyer conjecture by Ciro Santilli 35 Updated +Created
The BSD conjecture states that if your name is long enough, it will always count as two letters on a famous conjecture.
Maybe also insert a joke about BSD Operating Systems if you're into that kind of stuff.
The conjecture states that Equation 1. "BSD conjecture" holds for every elliptic curve over the rational numbers (which is defined by its constants and )
Equation 1. . Where the following numbers are defined for the elliptic curve we are currently considering, defined by its constants and :
The conjecture, if true, provides a (possibly inefficient) way to calculate the rank of an elliptic curve over the rational numbers, since we can calculate the number of elements of an elliptic curve over a finite field by Schoof's algorithm in polynomial time. So it is just a matter of calculating like that up to some point at which we are quite certain about .
The Wikipedia page of the this conecture is the perfect example of why it is not possible to teach natural sciences on Wikipedia. A million dollar problem, and the page is thoroughly incomprehensible unless you already know everything!
Figure 1.
as a function of for the elliptic curve
. Source. The curve is known to have rank 1, and the logarithmic plot tends more and more to a line of slope 1 as expected from the conjecture, matching the rank.
Video 2.
The $1,000,000 Birch and Swinnerton-Dyer conjecture by Absolutely Uniformly Confused (2022)
Source. A respectable 1 minute attempt. But will be too fast for most people. The sweet spot is likely 2 minutes.
USB Micro-B by Ciro Santilli 35 Updated +Created
Distributed computing by Ciro Santilli 35 Updated +Created
SETI@home by Ciro Santilli 35 Updated +Created
Double bond by Ciro Santilli 35 Updated +Created
Cloud computing by Ciro Santilli 35 Updated +Created

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact