One of the leading figures of the early development of quantum electrodynamics.
This one might actually be understandable! It is what Richard Feynman starts to explain at: Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979).
The difficulty is then proving that the total probability remains at 1, and maybe causality is hard too.
The path integral formulation can be seen as a generalization of the double-slit experiment to infinitely many slits.
Feynman first stared working it out for non-relativistic quantum mechanics, with the relativistic goal in mind, and only later on he attained the relativistic goal.
TODO why intuitively did he take that approach? Likely is makes it easier to add special relativity.
This approach more directly suggests the idea that quantum particles take all possible paths.
The quantum NOT gate swaps the state of and , i.e. it maps:As a result, this gate also inverts the probability of measuring 0 or 1, e.g.
- if the old probability of 0 was 0, then it becomes 1
- if the old probability of 0 was 0.2, then it becomes 0.8
Equation 2.
Quantum NOT gate matrix
. en.wikipedia.org/wiki/Paulo_Freire:OMG so nice.
During his childhood and adolescence, Freire ended up four grades behind, and his social life revolved around playing pick-up football with other poor children, from whom he claims to have learned a great deal. These experiences would shape his concerns for the poor and would help to construct his particular educational viewpoint. Freire stated that poverty and hunger severely affected his ability to learn. These experiences influenced his decision to dedicate his life to improving the lives of the poor: "I didn't understand anything because of my hunger. I wasn't dumb. It wasn't lack of interest. My social condition didn't allow me to have an education. Experience showed me once again the relationship between social class and knowledge"
The Hubble-Reynolds law does not exist in the scientific literature as a well-defined principle or law. However, it is possible that you may be conflating or mixing concepts related to two distinct scientific principles: **Hubble's Law** and the **Reynolds number**.
"P2FMS" terminology mentioned e.g. at: Data Insertion in Bitcoin's Blockchain by Andrew Sward, Vecna OP_0 and Forrest Stonedahl.
Forms the bacterial cell wall.
From the Wikipedia image we can see clearly the polymer structure formed: it is a mesh with:
- sugar covalent bond chains in one direction. These have two types of monosaccharide, NAM and NAG
- peptide chains on the other, and only coming off from NAM
Peptidoglycan polymer structure
. Source. Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact