Binds an amino acid to the correct corresponding tRNA sequence. Wikipedia mentions that humans have 20 of them, one for each proteinogenic amino acid.
Forest: an Operating System for Quantum Computing by Guen Prawiroatmodjo (2017)
Source. The title of the talk is innapropriate, this is a very basic overview of the entire Rigetti Computing stack. Still some fine mentions. Her name is so long, TODO origin? She later moved to Microsoft Quantum: www.linkedin.com/in/gueneverep/.Unfortunately accused of sexual misconduct: www.theguardian.com/technology/2019/mar/11/google-executive-payout-harassment-amit-singhal. But one can still do good despite our defects:
Pitched OurBigBook.com to him:
Idea: make all Sitare University materials open, and allow students to write the content
Boooooring.
We go forward by Owlturd
. Source. Being a first generation immigrant, this cartoon does make Ciro think about the future of his children.
Immigrating is incredibly time consuming and direclty limits what you can do in life later on. One can only hope that their children will take advantage of the new opportunities provided to them.
The author apparently self deleted his site at some point unfortnately: www.reddit.com/r/OutOfTheLoop/comments/7dyslp/apparently_shen_from_owlturd_is_going_on_hiatus/
Second quantization also appears to be useful not only for relativistic quantum mechanics, but also for condensed matter physics. The reason is that the basis idea is to use the number occupation basis. This basis is:
- convenient for quantum field theory because of particle creation and annihilation changes the number of particles all the time
- convenient for condensed matter physics because there you have a gazillion particles occupying entire energy bands
Bibliography:
- www.youtube.com/watch?v=MVqOfEYzwFY "How to Visualize Quantum Field Theory" by ZAP Physics (2020). Has 1D simulations on a circle. Starts towards the right direction, but is a bit lacking unfortunately, could go deeper.
2019 redefinition of the SI base units by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
web.archive.org/web/20181119214326/https://www.bipm.org/utils/common/pdf/CGPM-2018/26th-CGPM-Resolutions.pdf gives it in raw:The breakdown is:
- the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
- the speed of light in vacuum c is 299 792 458 m/s
- the Planck constant h is 6.626 070 15 × J s
- the elementary charge e is 1.602 176 634 × C
- the Boltzmann constant k is 1.380 649 × J/K
- the Avogadro constant NA is 6.022 140 76 × mol
- the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W,
- actually use some physical constant:
the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
Defines the second in terms of caesium-133 experiments. The beauty of this definition is that we only have to count an integer number of discrete events, which is what allows us to make things precise.the speed of light in vacuum c is 299 792 458 m/s
Defines the meter in terms of speed of light experiments. We already had the second from the previous definition.the Planck constant h is 6.626 070 15 × J s
the elementary charge e is 1.602 176 634 × C
- arbitrary definitions based on the above just to match historical values as well as possible:
the Boltzmann constant k is 1.380 649 × J/K
the Avogadro constant NA is 6.022 140 76 × mol
the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W
A Baidu Baike page: baike.baidu.hk/item/層層水瀾/12386243 mentions that the score was published in 1970 by Tao Yimo (陶一陌) in a eponymous score book.
Includes:
Does not include amphibians. If you include them, you have the tetrapods.
Selected Papers on Quantum Electrodynamics by Julian Schwinger (1958) by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Ampere in the 2019 redefinition of the SI base units by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Starting in the 2019 redefinition of the SI base units, the elementary charge is assigned a fixed number, and the Ampere is based on it and on the second, which is beautiful.
This choice is not because we attempt to count individual electrons going through a wire, as it would be far too many to count!
Rather, it is because because there are two crazy quantum mechanical effects that give us macroscopic measures that are directly related to the electron charge. www.nist.gov/si-redefinition/ampere/ampere-quantum-metrology-triangle by the NIST explains that the two effects are:
- quantum Hall effect, which has discrete resistances of type:for integer values of .
- Josephson effect, used in the Josephson voltage standard. With the Inverse AC Josephson effect we are able to produce:per Josephson junction. This is about 2 microvolt / GHz, where GHz is a practical input frequency. Video "The evolution of voltage metrology to the latest generation of JVSs by Alain Rüfenacht" mentions that a typical operating frequency is 20 GHz.But this is possible to implement in a single chip with existing micro fabrication techniques, and is exactly what the Josephson voltage standard does!
Those effect work because they also involve dividing by the Planck constant, the fundamental constant of quantum mechanics, which is also tiny, and thus brings values into a much more measurable order of size.
Analects translation by Robert Eno (2015) by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Analytical method to solve a partial differential equation by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact