Bought: 2018, 2021.
Seems to work OK. But you're fighting the symptom, and it will eventually come back.
Neuro-symbolic AI by Ciro Santilli 37 Updated 2025-07-16
An IBM made/pushed term, but that matches Ciro Santilli's general view of how we should move forward AGI.
Ciro's motivation/push for this can be seen e.g. at: Ciro's 2D reinforcement learning games.
Interesting layer skip architecture thing.
Apparently destroyed ImageNet 2015 and became very very famous as such.
ResNet v1 vs v1.5 by Ciro Santilli 37 Updated 2025-07-16
catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch explains:
The difference between v1 and v1.5 is that, in the bottleneck blocks which requires downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution.
This difference makes ResNet50 v1.5 slightly more accurate (~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec).
CNN convolution kernels are not hardcoded. They are learnt and optimized via backpropagation. You just specify their size! Example in PyTorch you'd do just:
nn.Conv2d(1, 6, kernel_size=(5, 5))
as used for example at: activatedgeek/LeNet-5.
This can also be inferred from: stackoverflow.com/questions/55594969/how-to-visualise-filters-in-a-cnn-with-pytorch where we see that the kernels are not perfectly regular as you'd expected from something hand coded.
activatedgeek/LeNet-5 by Ciro Santilli 37 Updated 2025-07-16
This repository contains a very clean minimal PyTorch implementation of LeNet-5 for MNIST.
It trains the LeNet-5 neural network on the MNIST dataset from scratch, and afterwards you can give it newly hand-written digits 0 to 9 and it will hopefully recognize the digit for you.
Ciro Santilli created a small fork of this repo at lenet adding better automation for:
Install on Ubuntu 24.10 with:
sudo apt install protobuf-compiler
git clone https://github.com/activatedgeek/LeNet-5
cd LeNet-5
git checkout 95b55a838f9d90536fd3b303cede12cf8b5da47f
virtualenv -p python3 .venv
. .venv/bin/activate
pip install \
  Pillow==6.2.0 \
  numpy==1.24.2 \
  onnx==1.13.1 \
  torch==2.0.0 \
  torchvision==0.15.1 \
  visdom==0.2.4 \
;
We use our own pip install because their requirements.txt uses >= instead of == making it random if things will work or not.
On Ubuntu 22.10 it was instead:
pip install
  Pillow==6.2.0 \
  numpy==1.26.4 \
  onnx==1.17.0 torch==2.6.0 \
  torchvision==0.21.0 \
  visdom==0.2.4 \
;
Then run with:
python run.py
This script:
  • does a fixed 15 epochs on the training data
  • it then uses the trained net from memory to check accuracy with the test data
  • then it also produces a lenet.onnx ONNX file which contains the trained network, nice!
It throws a billion exceptions because we didn't start the Visdom server, but everything works nevertheless, we just don't get a visualization of the training.
The terminal outputs lines such as:
Train - Epoch 1, Batch: 0, Loss: 2.311587
Train - Epoch 1, Batch: 10, Loss: 2.067062
Train - Epoch 1, Batch: 20, Loss: 0.959845
...
Train - Epoch 1, Batch: 230, Loss: 0.071796
Test Avg. Loss: 0.000112, Accuracy: 0.967500
...
Train - Epoch 15, Batch: 230, Loss: 0.010040
Test Avg. Loss: 0.000038, Accuracy: 0.989300
And the runtime on Ubuntu 22.10, P51 was:
real    2m10.262s
user    11m9.771s
sys     0m26.368s
One of the benefits of the ONNX output is that we can nicely visualize the neural network on Netron:
Figure 1.
Netron visualization of the activatedgeek/LeNet-5 ONNX output
. From this we can see the bifurcation on the computational graph as done in the code at:
output = self.c1(img)
x = self.c2_1(output)
output = self.c2_2(output)
output += x
output = self.c3(output)
This doesn't seem to conform to the original LeNet-5 however?
Now let's try and use the trained ONNX file for inference on some manually drawn images on GIMP:
Figure 1.
Number 9 drawn with mouse on GIMP by Ciro Santilli (2023)
.
Note that:
  • the images must be drawn with white on black. If you use black on white, it the accuracy becomes terrible. This is a good very example of brittleness in AI systems!
  • images must be converted to 32x32 for lenet.onnx, as that is what training was done on. The training step converted the 28x28 images to 32x32 as the first thing it does before training even starts
We can try the code adapted from thenewstack.io/tutorial-using-a-pre-trained-onnx-model-for-inferencing/ at lenet/infer.py:
cd lenet
cp ~/git/LeNet-5/lenet.onnx .
wget -O 9.png https://raw.githubusercontent.com/cirosantilli/media/master/Digit_9_hand_drawn_by_Ciro_Santilli_on_GIMP_with_mouse_white_on_black.png
./infer.py 9.png
and it works pretty well! The program outputs:
9
as desired.
We can also try with images directly from Extract MNIST images.
infer_mnist.py lenet.onnx mnist_png/out/testing/1/*.png
and the accuracy is great as expected.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact