Solving differential equations was apparently Lie's original motivation for developing Lie groups. It is therefore likely one of the most understandable ways to approach it.
It appears that Lie's goal was to understand when can a differential equation have an explicitly written solution, much like Galois theory had done for algebraic equations. Both approaches use symmetry as the key tool.
Lie algebra by Ciro Santilli 37 Updated 2025-07-16
Intuitively, a Lie algebra is a simpler object than a Lie group. Without any extra structure, groups can be very complicated non-linear objects. But a Lie algebra is just an algebra over a field, and one with a restricted bilinear map called the Lie bracket, that has to also be alternating and satisfy the Jacobi identity.
Another important way to think about Lie algebras, is as infinitesimal generators.
Because of the Lie group-Lie algebra correspondence, we know that there is almost a bijection between each Lie group and the corresponding Lie algebra. So it makes sense to try and study the algebra instead of the group itself whenever possible, to try and get insight and proofs in that simpler framework. This is the key reason why people study Lie algebras. One is philosophically reminded of how normal subgroups are a simpler representation of group homomorphisms.
To make things even simpler, because all vector spaces of the same dimension on a given field are isomorphic, the only things we need to specify a Lie group through a Lie algebra are:Note that the Lie bracket can look different under different basis of the Lie algebra however. This is shown for example at Physics from Symmetry by Jakob Schwichtenberg (2015) page 71 for the Lorentz group.
As mentioned at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4 "Lie Algebras", taking the Lie algebra around the identity is mostly a convention, we could treat any other point, and things are more or less equivalent.
Elements of a Lie algebra can (should!) be seen a continuous analogue to the generating set of a group in finite groups.
For continuous groups however, we can't have a finite generating set in the strict sense, as a finite set won't ever cover every possible point.
But the generator of a Lie algebra can be finite.
And just like in finite groups, where you can specify the full group by specifying only the relationships between generating elements, in the Lie algebra you can almost specify the full group by specifying the relationships between the elements of a generator of the Lie algebra.
This "specification of a relation" is done by defining the Lie bracket.
The reason why the algebra works out well for continuous stuff is that by definition an algebra over a field is a vector space with some extra structure, and we know very well how to make infinitesimal elements in a vector space: just multiply its vectors by a constant that cana be arbitrarily small.
Solution for given and of:
where is the exponential map.
If we consider just real number, , but when X and Y are non-commutative, things are not so simple.
Furthermore, TODO confirm it is possible that a solution does not exist at all if and aren't sufficiently small.
This formula is likely the basis for the Lie group-Lie algebra correspondence. With it, we express the actual group operation in terms of the Lie algebra operations.
Notably, remember that a algebra over a field is just a vector space with one extra product operation defined.
Since a group is basically defined by what the group operation does to two arbitrary elements, once we have that defined via the Baker-Campbell-Hausdorff formula, we are basically done defining the group in terms of the algebra.
Continuous symmetry by Ciro Santilli 37 Updated 2025-07-16
Basically a synonym for Lie group which is the way of modelling them.
Local symmetry by Ciro Santilli 37 Updated 2025-07-16
Appears to be a synonym for: gauge symmetry.
A local symmetry is a transformation that you apply a different transformation for each point, instead of a single transformation for every point.
TODO what's the point of a local symmetry?
Bibliography:

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact