What is more obscene: sex or war? scene from The People vs. Larry Flynt
. Source. 1996One of the first 1 million USD (zero artistic value) porn movie. And also a piece of shit! Hotter porn has been shot in kitchens around the world using iPhones.
IMDb entry: www.imdb.com/title/tt0477457/.
Ciro's best quotes selected by no one other than Ciro can be found at: Ciro Santilli's best random thoughts.
Jesus has some nice ones: Section "Quote by Jesus".
Related to technology:
- "Think" by Thomas J. Watson, 1915. The audio is a must: en.wikipedia.org/wiki/File:Think_Thomas_J_Watson_Sr.ogg. The past greatness of IBM at its brightest.
Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) by
Ciro Santilli 35 Updated 2025-04-24 +Created 1970-01-01
6 hour lecture, where he tries to explain it to an audience that does not know any modern physics. This is a noble effort.
Part of The Douglas Robb Memorial Lectures lecture series.
Feynman apparently also made a book adaptation: QED: The Strange Theory of Light and Matter. That book is basically word by word the same as the presentation, including the diagrams.
According to www.feynman.com/science/qed-lectures-in-new-zealand/ the official upload is at www.vega.org.uk/video/subseries/8 and Vega does show up as a watermark on the video (though it is too pixilated to guess without knowing it), a project that has been discontinued and has has a non-permissive license. Newbs.
4 parts:This talk has the merit of being very experiment oriented on part 2, big kudos: how to teach and learn physics
- Part 1: is saying "photons exist"
- Part 2: is amazing, and describes how photons move as a sum of all possible paths, not sure if it is relativistic at all though, and suggests that something is minimized in that calculation (the action)
- Part 3: is where he hopelessly tries to explain the crucial part of how electrons join the picture in a similar manner to how photons do.He does make the link to light, saying that there is a function which gives the amplitude for a photon going from A to B, where A and B are spacetime events.And then he mentions that there is a similar function for an electron to go from A to B, but says that that function is too complicated, and gives no intuition unlike the photon one.He does not mention it, but P and E are the so called propagators.This is likely the path integral formulation of QED.On Quantum Mechanical View of Reality by Richard Feynman (1983) he mentions that is a Bessel function, without giving further detail.And also mentions that:where
m
is basically a scale factor.
such that both are very similar. And that something similar holds for many other particles.And then, when you draw a Feynman diagram, e.g. electron emits photon and both are detected at given positions, you sum over all the possibilities, each amplitude is given by:summed over all possible Spacetime points.This is basically well said at: youtu.be/rZvgGekvHes?t=3349 from Quantum Mechanical View of Reality by Richard Feynman (1983).TODO: how do electron velocities affect where they are likely to end up? suggests the probability only depends on the spacetime points.Also, this clarifies why computations in QED are so insane: you have to sum over every possible point in space!!! TODO but then how do we calculate anything at all in practice? - Part 4: known problems with QED and thoughts on QCD. Boring.
Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) uploaded by Trev M (2015)
Source. Single upload version. Let's use this one for the timestamps I guess.- youtu.be/Alj6q4Y0TNE?t=2217: photomultiplier tube
- youtu.be/Alj6q4Y0TNE?t=2410: local hidden-variable theory
- youtu.be/Alj6q4Y0TNE?t=6444: mirror experiment shown at en.wikipedia.org/w/index.php?title=Quantum_electrodynamics&oldid=991301352#Probability_amplitudes
- youtu.be/Alj6q4Y0TNE?t=7309: mirror experiment with a diffraction grating pattern painted black leads to reflection at a weird angle
- youtu.be/Alj6q4Y0TNE?t=7627: detector under water to explain refraction
- youtu.be/Alj6q4Y0TNE?t=8050: explains biconvex spherical lens in terms of minimal times
- youtu.be/Alj6q4Y0TNE?t=8402: mentions that for events in a series, you multiply the complex number of each step
- youtu.be/Alj6q4Y0TNE?t=9270: mentions that the up to this point, ignored:but it should not be too hard to add those
- amplitude shrinks down with distance
- photon polarization
- youtu.be/Alj6q4Y0TNE?t=11697: finally starts electron interaction. First point is to add time of event detection.
- youtu.be/Alj6q4Y0TNE?t=13704: electron between plates, and mentions the word action, without giving a clear enough idea of what it is unfortunately
- youtu.be/Alj6q4Y0TNE?t=14467: mentions positrons going back in time, but does not clarify it well enough
- youtu.be/Alj6q4Y0TNE?t=16614: on the fourth part, half is about frontiers in quantum electrodynamics, and half full blown theory of everything. The QED part goes into renormalization and the large number of parameters of the Standard Model
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact