These were ordinals that were only indexed in later versions of the script. So to prevent changing the useless indices of existing ordinals, they gave them negative numbers.
The word "cursed" is a meme from the 2010/20s, e.g. knowyourmeme.com/memes/cursed-images--2.
Some examples:
Looking at the energy level of the Schrödinger equation solution for the hydrogen atom, you would guess that for multi-electron atoms that only the principal quantum number would matter, azimuthal quantum number getting filled randomly.
However, orbitals energies for large atoms don't increase in energy like those of hydrogen due to electron-electron interactions.
In particular, the following would not be naively expected:
Spin (physics) by Ciro Santilli 40 Updated 2025-07-16
Spin is one of the defining properties of elementary particles, i.e. number that describes how an elementary particle behaves, much like electric charge and mass.
Possible values are half integer numbers: 0, 1/2, 1, 3/2, and so on.
The approach shown in this section: Section "Spin comes naturally when adding relativity to quantum mechanics" shows what the spin number actually means in general. As shown there, the spin number it is a direct consequence of having the laws of nature be Lorentz invariant. Different spin numbers are just different ways in which this can be achieved as per different Representation of the Lorentz group.
Video 1. "Quantum Mechanics 9a - Photon Spin and Schrodinger's Cat I by ViaScience (2013)" explains nicely how:
Video 1.
Quantum Mechanics 9a - Photon Spin and Schrodinger's Cat I by ViaScience (2013)
Source.
Video 2.
Quantum Spin - Visualizing the physics and mathematics by Physics Videos by Eugene Khutoryansky (2016)
Source.
Video 3.
Understanding QFT - Episode 1 by Highly Entropic Mind (2023)
. Source. Maybe he stands a chance.
A way to write the wavefunction such that the position operator is:i.e., a function that takes the wavefunction as input, and outputs another function:
If you believe that mathematicians took care of continuous spectrum for us and that everything just works, the most concrete and direct thing that this representation tells us is that:
the probability of finding a particle between and at time
equals:
Dirac Lagrangian by Ciro Santilli 40 Updated 2025-07-16
where:
Remember that is a 4-vetor, gamma matrices are 4x4 matrices, so the whole thing comes down to a dot product of two 4-vectors, with a modified by matrix multiplication/derivatives, and the result is a scalar, as expected for a Lagrangian.
Like any other Lagrangian, you can then recover the Dirac equation, which is the corresponding equations of motion, by applying the Euler-Lagrange equation to the Lagrangian.
Initially a phenomenological guess to explain the periodic table. Later it was apparently proven properly with the spin-statistics theorem, physics.stackexchange.com/questions/360140/theoretical-proof-of-paulis-exclusion-principle.
And it was understood more and more that basically this is what prevents solids from collapsing into a single nucleus, not electrical repulsion: electron degeneracy pressure!
Bibliography:
Video 1.
The Biggest Ideas in the Universe | 17. Matter by Sean Carroll (2020)
Source.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact