Fourier transform by Ciro Santilli 37 Updated 2025-07-16
Continuous version of the Fourier series.
Of course, every function defined on a finite line segment (i.e. a compact space).
Therefore, the Fourier transform can be seen as a generalization of the Fourier series that can also decompose functions defined on the entire real line.
As a more concrete example, just like the Fourier series is how you solve the heat equation on a line segment with Dirichlet boundary conditions as shown at: Section "Solving partial differential equations with the Fourier series", the Fourier transform is what you need to solve the problem when the domain is the entire real line.
Lecture notes:
Video 1.
How the 2D FFT works by Mike X Cohen (2017)
Source. Animations showing how the 2D Fourier transform looks like for simple inpuf functions.
A set of theorems that prove under different conditions that the Fourier transform has an inverse for a given space, examples:
Laplace transform by Ciro Santilli 37 Updated 2025-07-16
Video 1.
The Laplace Transform: A Generalized Fourier Transform by Steve Brunton (2020)
Source. Explains how the Laplace transform works for functions that do not go to zero on infinity, which is a requirement for the Fourier transform. No applications in that video yet unfortunately.
First published by Fourier in 1807 to solve the heat equation.
Topology by Ciro Santilli 37 Updated 2025-07-16
Just by havin the notion of neighbourhood, concepts such as limit and continuity can be defined without the need to specify a precise numerical value to the distance between two points with a metric.
As an example. consider the orthogonal group, which is also naturally a topological space. That group does not usually have a notion of distance defined for it by default. However, we can still talk about certain properties of it, e.g. that the orthogonal group is compact, and that the orthogonal group has two connected components.
Covering space by Ciro Santilli 37 Updated 2025-07-16
Basically it is a larger space such that there exists a surjection from the large space onto the smaller space, while still being compatible with the topology of the small space.
We can characterize the cover by how injective the function is. E.g. if two elements of the large space map to each element of the small space, then we have a double cover and so on.
Time translation symmetry is a concept in physics, particularly in the context of classical mechanics and field theory, that indicates that the laws of physics do not change over time. This means that the physical laws that govern a system remain invariant regardless of when the system is observed.
Manifold by Ciro Santilli 37 Updated 2025-07-16
We map each point and a small enough neighbourhood of it to , so we can talk about the manifold points in terms of coordinates.
Does not require any further structure besides a consistent topological map. Notably, does not require metric nor an addition operation to make a vector space.
Manifolds are cool. Especially differentiable manifolds which we can do calculus on.
A notable example of a Non-Euclidean geometry manifold is the space of generalized coordinates of a Lagrangian. For example, in a problem such as the double pendulum, some of those generalized coordinates could be angles, which wrap around and thus are not euclidean.
Affirmative action by Ciro Santilli 37 Updated 2025-07-16
Ciro Santilli is against all affirmative action, except for one: giving amazing free eduction to the poor.
Notably, Ciro is against university entry quotas.
Covariant derivative by Ciro Santilli 37 Updated 2025-07-16
A generalized definition of derivative that works on manifolds.
TODO: how does it maintain a single value even across different coordinate charts?
TODO find a concrete numerical example of doing calculus on a differentiable manifold and visualizing it. Likely start with a boring circle. That would be sweet...
Tangent space by Ciro Santilli 37 Updated 2025-07-16
TODO what's the point of it.
Bibliography:
Metric (mathematics) by Ciro Santilli 37 Updated 2025-07-16
A metric is a function that give the distance, i.e. a real number, between any two elements of a space.
A metric may be induced from a norm as shown at: Section "Metric induced by a norm".

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact