Some of the earlier computers of the 20th centure were analog computers, not digital.
At some point analog died however, and "computer" basically by default started meaning just "digital computer".
As of the 2010's and forward, with the limit of Moore's law and the rise of machine learning, people have started looking again into analog computing as a possile way forward. A key insight is that huge floating point precision is not that crucial in many deep learning applications, e.g. many new digital designs have tried 16-bit floating point as opposed to the more traditional 32-bit minium. Some papers are even looking into 8-bit: dl.acm.org/doi/10.5555/3327757.3327866
As an example, the Lightmatter company was trying to implement silicon photonics-based matrix multiplication.
A general intuition behind this type of development is that the human brain, the holy grail of machine learning, is itself an analog computer.
For a commented initial example, see: e. Coli K-12 MG1655 gene thrA.
But BioCyc is generally better otherwise.
Basically the opposite of security through obscurity, though slightly more focused on cryptography.
Step of electronic design automation that maps the register transfer level input (e.g. Verilog) to a standard cell library.
In the context of Maxwell's equations, it is vector field that is one of the inputs of the equation.
Section "Maxwell's equations with pointlike particles" asks if the theory would work for pointlike particles in order to predict the evolution of this field as part of the equations themselves rather than as an external element.
Measured in amperes in the International System of Units.
Monster Raving Loony Party Conference by Britclip
. Source. - quantumtech.blog/2023/01/17/quantum-computing-with-neutral-atoms/ OK this one hits it:So we understand that it is truly like the classical computer analog vs digital case.
As Alex Keesling, CEO of QuEra told me, "... whereas in gate-based [digital] quantum computing the focus is on the sequence of the gates, in analog quantum processing it's more about the position of the atoms and where you place them so they can mirror real life problems. We arrange the atoms and define the forces that drive them and then measure the result... so it’s a geometric encoding of the problem itself."
- thequantuminsider.com/2022/06/28/why-analog-neutral-atoms-quantum-computing-is-a-promising-direction-for-early-quantum-advantage on The Quantum Insider useless article mostly by Pasqal
TensorFlow quantum by Masoud Mohseni (2020)
Source. At the timestamp, Masoud gives a thought experiment example of the perhaps simplest to understand analog quantum computer: chained double-slit experiments with carefully calculated distances between slits. Calulating the final propability distribution of that grows exponentially. Unlisted articles are being shown, click here to show only listed articles.