Ampere Updated 2025-07-16
Unit of electric current.
Affected by the ampere in the 2019 redefinition of the SI base units.
Ampere in the 2019 redefinition of the SI base units Updated 2025-07-16
Starting in the 2019 redefinition of the SI base units, the elementary charge is assigned a fixed number, and the Ampere is based on it and on the second, which is beautiful.
This choice is not because we attempt to count individual electrons going through a wire, as it would be far too many to count!
Rather, it is because because there are two crazy quantum mechanical effects that give us macroscopic measures that are directly related to the electron charge. www.nist.gov/si-redefinition/ampere/ampere-quantum-metrology-triangle by the NIST explains that the two effects are:
- quantum Hall effect, which has discrete resistances of type:for integer values of .
- Josephson effect, used in the Josephson voltage standard. With the Inverse AC Josephson effect we are able to produce:per Josephson junction. This is about 2 microvolt / GHz, where GHz is a practical input frequency. Video "The evolution of voltage metrology to the latest generation of JVSs by Alain Rüfenacht" mentions that a typical operating frequency is 20 GHz.But this is possible to implement in a single chip with existing micro fabrication techniques, and is exactly what the Josephson voltage standard does!
Those effect work because they also involve dividing by the Planck constant, the fundamental constant of quantum mechanics, which is also tiny, and thus brings values into a much more measurable order of size.
Interference pattern Updated 2025-07-16
Notably used for the pattern of the double-slit experiment.
Amplifier Updated 2025-07-16
Main implementations: the same as electronic switches: vacuum tubes in the past, and transistors in the second half of the 20th century.
Ciência sem Fronteiras Updated 2025-07-16
Matthew Heaney Updated 2025-07-16
tcpdump Updated 2025-07-16
To test it, let's get two computers on the same local area network, e.g. connected to Wi-Fi on the same home modem router.
On computer B:
- find computer IP with the
ip
CLI tool. Suppose it is 192.168.1.102 - then run Ciro's
nc
HTTP test server
Output on terminal 1:TODO understand them all! Possibly correlate with Wireshark, or use
17:14:22.017001 IP ciro-p14s.55798 > 192.168.1.102.8000: Flags [S], seq 2563867413, win 64240, options [mss 1460,sackOK,TS val 303966323 ecr 0,nop,wscale 7], length 0
17:14:22.073957 IP 192.168.1.102.8000 > ciro-p14s.55798: Flags [S.], seq 1371418143, ack 2563867414, win 65160, options [mss 1460,sackOK,TS val 171832817 ecr 303966323,nop,wscale 7], length 0
17:14:22.074002 IP ciro-p14s.55798 > 192.168.1.102.8000: Flags [.], ack 1, win 502, options [nop,nop,TS val 303966380 ecr 171832817], length 0
17:14:22.074195 IP ciro-p14s.55798 > 192.168.1.102.8000: Flags [P.], seq 1:82, ack 1, win 502, options [nop,nop,TS val 303966380 ecr 171832817], length 81
17:14:22.076710 IP 192.168.1.102.8000 > ciro-p14s.55798: Flags [P.], seq 1:80, ack 1, win 510, options [nop,nop,TS val 171832821 ecr 303966380], length 79
17:14:22.076710 IP 192.168.1.102.8000 > ciro-p14s.55798: Flags [.], ack 82, win 510, options [nop,nop,TS val 171832821 ecr 303966380], length 0
17:14:22.076727 IP ciro-p14s.55798 > 192.168.1.102.8000: Flags [.], ack 80, win 502, options [nop,nop,TS val 303966383 ecr 171832821], length 0
17:14:22.077006 IP ciro-p14s.55798 > 192.168.1.102.8000: Flags [F.], seq 82, ack 80, win 502, options [nop,nop,TS val 303966383 ecr 171832821], length 0
17:14:22.077564 IP 192.168.1.102.8000 > ciro-p14s.55798: Flags [F.], seq 80, ack 82, win 510, options [nop,nop,TS val 171832821 ecr 303966380], length 0
17:14:22.077578 IP ciro-p14s.55798 > 192.168.1.102.8000: Flags [.], ack 81, win 502, options [nop,nop,TS val 303966384 ecr 171832821], length 0
17:14:22.079429 IP 192.168.1.102.8000 > ciro-p14s.55798: Flags [.], ack 83, win 510, options [nop,nop,TS val 171832824 ecr 303966383], length 0
-A
option to dump content. Telomere Updated 2025-07-16
grep
Updated 2025-07-16 Analog computer Updated 2025-07-16
Some of the earlier computers of the 20th centure were analog computers, not digital.
At some point analog died however, and "computer" basically by default started meaning just "digital computer".
As of the 2010's and forward, with the limit of Moore's law and the rise of machine learning, people have started looking again into analog computing as a possile way forward. A key insight is that huge floating point precision is not that crucial in many deep learning applications, e.g. many new digital designs have tried 16-bit floating point as opposed to the more traditional 32-bit minium. Some papers are even looking into 8-bit: dl.acm.org/doi/10.5555/3327757.3327866
As an example, the Lightmatter company was trying to implement silicon photonics-based matrix multiplication.
A general intuition behind this type of development is that the human brain, the holy grail of machine learning, is itself an analog computer.
Google BigQuery Updated 2025-07-16
KEGG Updated 2025-07-16
For a commented initial example, see: e. Coli K-12 MG1655 gene thrA.
But BioCyc is generally better otherwise.
Kerckhoffs's principle Updated 2025-07-16
Basically the opposite of security through obscurity, though slightly more focused on cryptography.
Polytechnic Institute of Paris Updated 2025-07-16
Severe acute respiratory syndrome coronavirus 2 Updated 2025-07-16
Embryonics by species Updated 2025-07-16
Income distribution Updated 2025-07-16
Logic synthesis Updated 2025-07-16
Step of electronic design automation that maps the register transfer level input (e.g. Verilog) to a standard cell library.
Utility Updated 2025-07-16
Volt Updated 2025-07-16
There are unlisted articles, also show them or only show them.