Because a tensor is a multilinear form, it can be fully specified by how it act on all combinations of basis sets, which can be done in terms of components. We refer to each component as:where we remember that the raised indices refer dual vector.
Explain it properly bibliography:
- www.reddit.com/r/Physics/comments/7lfleo/intuitive_understanding_of_tensors/
- www.reddit.com/r/askscience/comments/sis3j2/what_exactly_are_tensors/
- math.stackexchange.com/questions/10282/an-introduction-to-tensors?noredirect=1&lq=1
- math.stackexchange.com/questions/2398177/question-about-the-physical-intuition-behind-tensors
- math.stackexchange.com/questions/657494/what-exactly-is-a-tensor
- physics.stackexchange.com/questions/715634/what-is-a-tensor-intuitively
From Raw Crystal to Crystal oscillator
. Source. by United States Army Signal Corps (1943)These are apparenty an important part of transcriptional regulation given the number of modifications they can undergo! Quite exciting.
Understand and explain amazingly every single Nobel Prize in physics, chemistry and biology. Since in particular the Nobel Foundation is unable to do that for any at all, especially of the key old ones, e.g. www.nobelprize.org/prizes/physics/1965/summary/. Hopeless.
To be fair, those in theoretical physics at least basically come down to reading a bunch of books. But perhaps anything slightly more experimental could have
Each term has 8 weeks, and the week number is often used to denote the time at which something happens.
Week 0 is also often used to denote the week before classes officially start. This is especially important in the first term of the year (Michaelmas term) where people are coming back to school and meeting old and new friends.
At the end of the year, after Trinity term, students have exams. These basically account for all of the grades. In certain courses such as the Physics course of the University of Oxford, there is only new material on Michaelmas term and Hilary term, Trinity term being revision-only. So you can imagine that during Trinity term, students are going to be on edge.
Bibliography:
- cherwell.org/2023/11/10/oxfords-term-structure-needs-to-change-heres-why-it-wont/ some criticism of the term organization on Cherwell because the terms are too short which increases student pressure to learn fast
This is an example of the
qiskit.circuit.library.QFT
implementation of the Quantum Fourier transform function which is documented at: docs.quantum.ibm.com/api/qiskit/0.44/qiskit.circuit.library.QFTOutput:So this also serves as a more interesting example of quantum compilation, mapping the
init: [1, 0, 0, 0, 0, 0, 0, 0]
qc
┌──────────────────────────────┐┌──────┐
q_0: ┤0 ├┤0 ├
│ ││ │
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├┤1 QFT ├
│ ││ │
q_2: ┤2 ├┤2 ├
└──────────────────────────────┘└──────┘
transpiled qc
┌──────────────────────────────┐ ┌───┐
q_0: ┤0 ├────────────────────■────────■───────┤ H ├─X─
│ │ ┌───┐ │ │P(π/2) └───┘ │
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├──────■───────┤ H ├─┼────────■─────────────┼─
│ │┌───┐ │P(π/2) └───┘ │P(π/4) │
q_2: ┤2 ├┤ H ├─■─────────────■──────────────────────X─
└──────────────────────────────┘└───┘
Statevector([0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
0.35355339+0.j, 0.35355339+0.j],
dims=(2, 2, 2))
init: [0.0, 0.35355339059327373, 0.5, 0.3535533905932738, 6.123233995736766e-17, -0.35355339059327373, -0.5, -0.35355339059327384]
Statevector([ 7.71600526e-17+5.22650714e-17j,
1.86749130e-16+7.07106781e-01j,
-6.10667421e-18+6.10667421e-18j,
1.13711443e-16-1.11022302e-16j,
2.16489014e-17-8.96726857e-18j,
-5.68557215e-17-1.11022302e-16j,
-6.10667421e-18-4.94044770e-17j,
-3.30200457e-16-7.07106781e-01j],
dims=(2, 2, 2))
QFT
gate to Qiskit Aer primitives.If we don't
transpile
in this example, then running blows up with:qiskit_aer.aererror.AerError: 'unknown instruction: QFT'
The second input is:and the output of that approximately:which can be defined simply as the normalized DFT of the input quantum state vector.
[0, 1j/sqrt(2), 0, 0, 0, 0, 0, 1j/sqrt(2)]
From this we see that the Quantum Fourier transform is equivalent to a direct discrete Fourier transform on the quantum state vector, related: physics.stackexchange.com/questions/110073/how-to-derive-quantum-fourier-transform-from-discrete-fourier-transform-dft
Ciro Santilli has been writing scripts of that type for a long time in order to test his programming self-learning setups with asserts.
The most advanced of those being the test system of Linux Kernel Module Cheat.
Although it is impossible to understand without examples in mind, try to get familiar with the manuals as soon as possible.
Intel describes paging in the Intel Manual Volume 3 System Programming Guide - 325384-056US September 2015 Chapter 4 "Paging".
Specially interesting is Figure 4-4 "Formats of CR3 and Paging-Structure Entries with 32-Bit Paging", which gives the key data structures.
Gospel of Matthew 4 King James Version:
18 And Jesus, walking by the sea of Galilee, saw two brethren, Simon called Peter, and andrew the Apostle his brother, casting a net into the sea: for they were fishers.19 And he saith unto them, Follow me, and I will make you fishers of men.
This is a good first concrete example of a Lie algebra. Shown at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" has an example.
Every element with this parametrization has determinant 1:Furthermore, any element can be reached, because by independently settting , and , , and can have any value, and once those three are set, is fixed by the determinant.
Remembering that the Lie bracket of a matrix Lie group is really simple, we can then observe the following Lie bracket relations between them:
One key thing to note is that the specific matrices , and are not really fundamental: we could easily have had different matrices if we had chosen any other parametrization of the group.
TODO confirm: however, no matter which parametrization we choose, the Lie bracket relations between the three elements would always be the same, since it is the number of elements, and the definition of the Lie bracket, that is truly fundamental.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4.2 "How to linearize a Lie Group" then calculates the exponential map of the vector as:with:
TODO now the natural question is: can we cover the entire Lie group with this exponential? Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation" explains why not.
The key and central motivation for studying Lie groups and their Lie algebras appears to be to characterize symmetry in Lagrangian mechanics through Noether's theorem, just start from there.
Notably local symmetries appear to map to forces, and local means "around the identity", notably: local symmetries of the Lagrangian imply conserved currents.
More precisely: local symmetries of the Lagrangian imply conserved currents.
TODO Ciro Santilli really wants to understand what all the fuss is about:
Oh, there is a low dimensional classification! Ciro is a sucker for classification theorems! en.wikipedia.org/wiki/Classification_of_low-dimensional_real_Lie_algebras
The fact that there are elements arbitrarily close to the identity, which is only possible due to the group being continuous, is the key factor that simplifies the treatment of Lie groups, and follows the philosophy of continuous problems are simpler than discrete ones.
Bibliography:
- youtu.be/kpeP3ioiHcw?t=2655 "Particle Physics Topic 6: Lie Groups and Lie Algebras" by Alex Flournoy (2016). Good SO(3) explicit exponential expansion example. Then next lecture shows why SU(2) is the representation of SO(3). Next ones appear to eventually get to the physical usefulness of the thing, but I lost patience. Not too far out though.
- www.youtube.com/playlist?list=PLRlVmXqzHjURZO0fviJuyikvKlGS6rXrb "Lie Groups and Lie Algebras" playlist by XylyXylyX (2018). Tutorial with infinitely many hours
- www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf
- www.physics.drexel.edu/~bob/LieGroups.html
What is Lie theory? by Mathemaniac 2023
. Source. There are unlisted articles, also show them or only show them.