Glueball Updated 2025-07-16
Lagrangian mechanics Updated 2025-07-16
Originally it was likely created to study constrained mechanical systems where you want to use some "custom convenient" variables to parametrize things instead of global x, y, z. Classical examples that you must have in mind include:
lagrangian mechanics lectures by Michel van Biezen (2017) is a good starting point.
When doing lagrangian mechanics, we just lump together all generalized coordinates into a single vector that maps time to the full state:
where each component can be anything, either the x/y/z coordinates relative to the ground of different particles, or angles, or nay other crazy thing we want.
The Lagrangian is a function that maps:
to a real number.
Then, the stationary action principle says that the actual path taken obeys the Euler-Lagrange equation:
This produces a system of partial differential equations with:
The mixture of so many derivatives is a bit mind mending, so we can clarify them a bit further. At:
the is just identifying which argument of the Lagrangian we are differentiating by: the i-th according to the order of our definition of the Lagrangian. It is not the actual function, just a mnemonic.
Then at:
  • the part is just like the previous term, just identifies the argument with index ( because we have the non derivative arguments)
  • after the partial derivative is taken and returns a new function , then the multivariable chain rule comes in and expands everything into terms
However, people later noticed that the Lagrangian had some nice properties related to Lie group continuous symmetries.
Basically it seems that the easiest way to come up with new quantum field theory models is to first find the Lagrangian, and then derive the equations of motion from them.
For every continuous symmetry in the system (modelled by a Lie group), there is a corresponding conservation law: local symmetries of the Lagrangian imply conserved currents.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
And partly due to the above observations, it was noticed that the easiest way to describe the fundamental laws of particle physics and make calculations with them is to first formulate their Lagrangian somehow: S.
Video 1.
Euler-Lagrange equation explained intuitively - Lagrangian Mechanics by Physics Videos by Eugene Khutoryansky (2018)
Source. Well, unsurprisingly, it is exactly what you can expect from an Eugene Khutoryansky video.
Porn meme Updated 2025-07-16
Bohr model Updated 2025-07-16
Was the first model to explain the Balmer series, notably linking atomic spectra to the Planck constant and therefore to other initial quantum mechanical observations.
This was one of the first major models that just said:
I give up, I can't tie this to classical physics in any way, let's just roll with it, OK?
It still treats electrons as little points spinning around the nucleus, but it makes the non-classical postulate that only certain angular momentums (and therefore energies) are allowed.
Boltzmann constant Updated 2025-07-16
This is not a truly "fundamental" constant of nature like say the speed of light or the Planck constant.
Rather, it is just a definition of our Kelvin temperature scale, linking average microscopic energy to our macroscopic temperature scale.
The way to think about that link is, at 1 Kelvin, each particle has average energy:
per degree of freedom.
This is why the units of the Boltzmann constant are Joules per Kelvin.
For an ideal monatomic gas, say helium, there are 3 degrees of freedom. so each helium atom has average energy:
If we have 2 atoms at 1 K, they will have average energy , and so on.
Another conclusion is that this defines temperature as being proportional to the total energy. E.g. if we had 1 helium atom at 2 K then we would have about energy, 3 K and so on.
This energy is of course just an average: some particles have more, and others less, following the Maxwell-Boltzmann distribution.
Semiconductor Updated 2025-07-16
The basis of 1970-20XX computers, gotta understand them I guess?
The Math Genome Project Updated 2025-07-16
Appears to support multiple proof assistant backends including Lean, Hol and Coq.
A discussion on the Lean Zulip: leanprover.zulipchat.com/#narrow/stream/113488-general/topic/The.20Math.20Genome.20Project/near/352639129. Lean people are not convinced about the model in general it seems however.
TODO not viewable without login?
Has conjectures feature.
Built by this dude John Mercer:He must be independently wealthy or something to do such a project? What a hero. But he seems to have jobs. On the side? Hardcore.
Ciro Santilli asked: discord.com/channels/1096393420408360989/1096393420408360996/1137047842159079474
Does the website actually automatically check the formal proofs, or is this intended to be implemented at some point? And if yes, is it intended to allow proofs to depend on other proofs of the website (possibly by other people)
Owner:
Hi Ciro, yes we will be releasing in-browser proof assistant environments/checkers (e.g. Lean). Our goal is not to replace the underlying open-source repos (e.g. Mathlib) so the main dependency will be on the current repos; then when statement formalizations and proofs come in and are certified they can be PR'd to the respective repos. So we will be the source of truth for the informal latex code but only a stepping stone and orchestration layer on the way to the respective formal libraries.
So apparently there will be proof checking, but no dependencies between proofs, you still have to pull request everything back and face the pain.
Acting Updated 2025-07-16
Bookdown Updated 2025-07-16
Written in R, but also relies on pandoc, so quite bad dependency wise.
Cross files references to IDs: yes. But no check by default for duplicates when doing automatic ID from title. Just automatically disambiguates with -1, -2 suffixes, and links take the last one available.
Source page splitting: splits at h2 by default. If configurable, likely always af fixed level?
Has some nice image generation from inline code from standard R plotting functions.
Hello world on Ubuntu 23.04 after installing R:
sudo R -e 'install.packages("bookdown")'
git clone https://github.com/rstudio/bookdown-demo
cd bookdown-demo
Rscript -e 'bookdown::render_book("index.Rmd")'
xdg-open _book/index.html
The build CLI comes from: stackoverflow.com/questions/50888871/how-to-use-rscript-command-line-tool-to-build-a-book-in-bookdown
The installatoin Rscript -e 'bookdown::render_book("index.Rmd")' takes several minutes, it compiles a bunch of stuff from source apparently. but it did work.
TODO: use the results from the quantum harmonic oscillator solution to precisely illustrate the discussion at Schrödinger picture with a concrete example.
Wave function Updated 2025-07-16
Contains the full state of the quantum system.
This is in contrast to classical mechanics where e.g. the state of mechanical system is given by two real functions: position and speed.
The wave equation in position representation on the other hand encodes speed in "how fast does the complex phase spin around", and direction in "does it spin clockwise or counterclockwise", as described well at: Video "Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)". Then once you understand that, it is more compact to just view those graphs with the phase color coded as in Video "Simulation of the time-dependent Schrodinger equation (JavaScript Animation) by Coding Physics (2019)".
Activism Updated 2025-07-16
Xun flute Updated 2025-07-16

Unlisted articles are being shown, click here to show only listed articles.