This was an intermediate step between the nuclear chain reaction prototype Chicago Pile-1 and the full blown plutonium mass production at Hanford site. Located in the Oak Ridge National Laboratory.
Exterior of the X-10 Graphite Reactor in 1950
. Source. Workers loading Uranium into the X-10 Graphite Reactor with a rod
. Source. The equation is simple: frequency is proportional to field strength!
Ubuntu 20.10 as per xmrig.com/docs/miner/build/ubuntu:At minexmr.com/#getting_started we see that all you then need is a single CLI command:Seems simple, well done devs!
sudo apt install git build-essential cmake libuv1-dev libssl-dev libhwloc-dev
git clone https://github.com/xmrig/xmrig.git
mkdir xmrig/build && cd xmrig/build
cmake ..
make -j$(nproc)
xmrig -o pool.minexmr.com:4444 -u <your-monero-address>
Benchmark on Lenovo ThinkPad P51 (2017) as per xmrig.com/docs/miner/benchmark:gives:which according to the minexmr.com mining pool would generate 0.0005 XMR/day, which at the February 2021 rate of 140 USD/XMR is 0.07 USD/day. The minimum payout in that pool is 0.004 XMR so it would take 8 days to reach that.
./xmrig --bench=1M
948.1 h/s
So clearly, application-specific integrated circuit mining is the only viable way of doing this.
Some people considering Raspberry Pis also conclude obviously that it is useless at a 10H/s rate:
www.makeuseof.com/cryptos-you-can-mine-at-home/ is a completely full of bullshit article that says otherwise. How can someone publish that!
Bluetooth support: not enough RAM for it, though in principle its chip/transceiver could support it! microbit-micropython.readthedocs.io/en/v1.0.1/ble.html
Supported editors: microbit.org/code/
MicroPython web editor and compiler: python.microbit.org/v/2
Everything in this section is tested on the Micro Bit v1 from Micro Bit v1 unless otherwise noted.
Bibliography:
For a commented initial example, see: e. Coli K-12 MG1655 gene thrA.
KEGG does the visual maps well.
But BioCyc is generally better otherwise.
In the context of cryptography, authentication means "ensuring that the message you got comes from who you think it did".
Authentication is how we prevent the man-in-the-middle attack.
Authentication is one of the hardest parts of cryptography, because the only truly secure way to do it is by driving to the other party yourself to establish a pre-shared key so you can do message authentication code. Or to share your public key with them if you are satisfied with the safety of post-quantum cryptography.
Toy model of matter that exhibits phase transition in dimension 2 and greater. It does not provide numerically exact results by itself, but can serve as a tool to theorize existing and new phase transitions.
Each point in the lattice has two possible states: TODO insert image.
As mentioned at: stanford.edu/~jeffjar/statmech/intro4.html some systems which can be seen as modelled by it include:
- the spins direction (up or down) of atoms in a magnet, which can undergo phase transitions depending on temperature as that characterized by the Curie temperature and an externally applied magnetic fieldNeighboring spins like to align, which lowers the total system energy.
- the type of atom at a lattice point in a 2-metal alloy, e.g. Fe-C (e.g. steel). TODO: intuition for the neighbor interaction? What likes to be with what? And aren't different phases in different crystal structures?
Also has some funky relations to renormalization TODO.
Bibliography:
The Ising Model in Python by Mr. P Solver
. Source. The dude is crushing it on a Jupyter Notebook. There are unlisted articles, also show them or only show them.