Once again, relies on superconductivity to reach insane magnetic fields. Superconductivity is just so important.
Ciro Santilli saw a good presentation about it once circa 2020, it seems that the main difficulty of the time was turbulence messing things up. They have some nice simulations with cross section pictures e.g. at: www.eurekalert.org/news-releases/937941.
This is the classic result of formal language theory, but there is too much slack between context free and context sensitive, which is PSPACE (larger than NP!).
By Noam Chomsky.
A good summary table that opens up each category much more can be seen e.g. at the bottom of en.wikipedia.org/wiki/Automata_theory under the summary thingy at the bottom entitled "Automata theory: formal languages and formal grammars".
The opposite of from first principles.
There's exactly one field per prime power, so all we need to specify a field is give its order, notated e.g. as .
It is interesting to compare this result philosophically with the classification of finite groups: fields are more constrained as they have to have two operations, and this leads to a much simpler classification!
Ciro Santilli tried to add this example to Wikipedia, but it was reverted, so here we are, see also: Section "Deletionism on Wikipedia".
This is a good first example of a field of a finite field of non-prime order, this one is a prime power order instead.
, so one way to represent the elements of the field will be the to use the 4 polynomials of degree 1 over GF(2):
Note that we refer in this definition to anther field, but that is fine, because we only refer to fields of prime order such as GF(2), because we are dealing with prime powers only. And we have already defined fields of prime order easily previously with modular arithmetic.
Without modulo, that would not be one of the elements of the field anymore due to the !
So we take the modulo, we note that:and by the definition of modulo:which is the final result of the multiplication.
GitHub account: github.com/hplgit
It should be mentioned that when you start Googling for PDE stuff, you will reach Han's writings a lot under his GitHub Pages: hplgit.github.io/, and he is one of the main authors of the FEniCS Project.
He also published to GitHub pages with his own crazy markdown-like multi-output markup language: github.com/hplgit/doconce.
Rest in peace, Hans.
Subtle is the Lord by Abraham Pais (1982) chapter 4 "Entropy and Probability" mentions well how Boltzmann first thought that the second law was an actual base physical law of the universe while he was calculating numerical stuff for it, including as late as 1872.
But then he saw an argument by Johann Joseph Loschmidt that given the time reversibility of classical mechanics, and because they were thinking of atoms as classical balls as in the kinetic theory of gases, then there always exist a valid physical state where entropy decreases, by just reversing the direction of time and all particle speeds.
So from this he understood that the second law can only be probabilistic, and not a fundamental law of physics, which he published clearly in 1877.
The general result from eigendecomposition of a matrix:becomes:where is an orthogonal matrix, and therefore has .
This is a good thing. It basically contains an entire website, with HTML and assets inside a single ZIP, and a little bit of metadata.
It is incomprehensible why browsers don't just implement it as they already have all the web part, and also ZIP stuff:
DNA amplification is one of the key DNA technologies:
- it is one of the main ways in which DNA detection can be done.
- it is the first step of Illumina sequencing, since you need multiple copies of several parts of the genome for the method to work
Big excitement picture at: molecular biology technologies.
There are unlisted articles, also show them or only show them.