Something analogous to a group isomorphism, but that preserves whatever properties the given algebraic object has. E.g. for a field, we also have to preserve multiplication in addition to addition.
Other common examples include isomorphisms of vector spaces and field. But since both of those two are much simpler than groups in classification, as they are both determined by number of elements/dimension alone, see:we tend to not talk about isomorphisms so much in those contexts.
Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Updated 2025-01-10 +Created 1970-01-01
The author seems to have uploaded the entire book by chapters at: www.physics.drexel.edu/~bob/LieGroups.html
And the author is the cutest: www.physics.drexel.edu/~bob/Personal.html.
Overview:
- Chapter 3: gives a bunch of examples of important matrix Lie groups. These are done by imposing certain types of constraints on the general linear group, to obtain subgroups of the general linear group. Feels like the start of a classification
- Chapter 4: defines Lie algebra. Does some basic examples with them, but not much of deep interest, that is mostl left for Chapter 7
- Chapter 5: calculates the Lie algebra for all examples from chapter 3
- Chapter 6: don't know
- Chapter 7: describes how the exponential map links Lie algebras to Lie groups
The following things come to mind when you look into research in this area, especially the search for BB(5) which was hard but doable:
- it is largely recreational mathematics, i.e. done by non-professionals, a bit like the aperiodic tiling. Humbly, they tend to call their results lemmas
- complex structure emerges from simple rules, leading to a complex classification with a few edge cases, much like the classification of finite simple groups
Bibliography:
Ciro Santilli intends to move his beauty list here little by little: github.com/cirosantilli/mathematics/blob/master/beauty.md
The most beautiful things in mathematics are results that are:
- simple to state but hard to prove:
- Fermat's Last Theorem
- transcendental number conjectures, e.g. is transcendental?
- basically any conjecture involving prime numbers:
- many combinatorial game questions, e.g.:
- surprising results: we had intuitive reasons to believe something as possible or not, but a theorem shatters that conviction and brings us on our knees, sometimes via pathological counter-examples. General surprise themes include:Lists:
- classification of potentially infinite sets like: compact manifolds, etc.
- problems that are more complicated in low dimensions than high like:
- generalized Poincaré conjectures. It is also fun to see how in many cases complexity peaks out at 4 dimensions.
- classification of regular polytopes
- unpredictable magic constants:
- why is the lowest dimension for an exotic sphere 7?
- why is 4 the largest degree of an equation with explicit solution? Abel-Ruffini theorem
- undecidable problems, especially simple to state ones:
- mortal matrix problem
- sharp frontiers between solvable and unsolvable are also cool:
- attempts at determining specific values of the Busy beaver function for Turing machines with a given number of states and symbols
- related to Diophantine equations:
- applications: make life easier and/or modeling some phenomena well, e.g. in physics. See also: explain how to make money with the lesson
Good lists of such problems Lists of mathematical problems.
Whenever Ciro Santilli learns a bit of mathematics, he always wonders to himself:Unfortunately, due to how man books are written, it is not really possible to reach insight without first doing a bit of memorization. The better the book, the more insight is spread out, and less you have to learn before reaching each insight.
Am I achieving insight, or am I just memorizing definitions?