These are pretty cool, they are basically a laser
Quantum Computing with Trapped Ions by Christopher Monroe (2018)
Source. Co-founder of IonQ. Cool dude. Starts with basic background we already know now. Mentions that there is some relationship between atomic clocks and trapped ion quantum computers, which is interesting. Then he goes into turbo mode, and you get lost unless you're an expert! Video 1. "Quantum Simulation and Computation with Trapped Ions by Christopher Monroe (2021)" is perhaps a better watch.- youtu.be/9aOLwjUZLm0?t=1216 superconducting qubits are bad because it is harder to ensure that they are all the same
- youtu.be/9aOLwjUZLm0?t=1270 our wires are provided by lasers. Gives example of ytterbium, which has nice frequencies for practical laser choice. Ytterbium ends in 6s2 5d1, so they must remove the 5d1 electron? But then you are left with 2 electrons in 6s2, can you just change their spins at will without problem?
- youtu.be/9aOLwjUZLm0?t=1391 a single atom actually reflects 1% of the input laser, not bad!
- youtu.be/9aOLwjUZLm0?t=1475 a transition that they want to drive in Ytterbium has 355 nm, which is easy to generate TODO why.
- youtu.be/9aOLwjUZLm0?t=1520 mentions that 351 would be much harder, e.g. as used in inertially confied fusion, takes up a room
- youtu.be/9aOLwjUZLm0?t=1539 what they use: a pulsed laser. It is made primarily for photolithography, Coherent, Inc. makes 200 of them a year, so it is reliable stuff and easy to operate. At www.coherent.com/lasers/nanosecond/avia-nx we can see some of their 355 offers. archive.ph/wip/JKuHI shows a used system going for 4500 USD.
- youtu.be/9aOLwjUZLm0?t=1584 Cirac and Zoller proposed the idea of using entangled ions soon after they heard about Shor's algorithm in 1995
- youtu.be/9aOLwjUZLm0?t=1641 you use optical tweezers to move the pairs of ions you want to entangle. This means shining a laser on two ions at the same time. Their movement depends on their spin, which is already in a superposition. If both move up, their distance stats the same, so the Coulomb interaction is unchanged. But if they are different, then one goes up and the other down, distance increases due to the diagonal, and energy is lower.
- youtu.be/9aOLwjUZLm0?t=1939 S. Debnah 2016 Nature experiment with a pentagon. Well, it is not a pentagon, they are just in a linear chain, the pentagon is just to convey the full connectivity. Maybe also Satanism. Anyways. This point also mentions usage of an acousto-optic modulator to select which atoms we want to act on. On the other side, a simpler wide laser is used that hits all atoms (optical tweezers are literally like tweezers in the sense that you use two lasers). Later on mentions that the modulator is from Harris, later merged with L3, so: www.l3harris.com/all-capabilities/acousto-optic-solutions
- youtu.be/9aOLwjUZLm0?t=2119 Bernstein-Vazirani algorithm. This to illustrate better connectivity of their ion approach compared to an IBM quantum computer, which is a superconducting quantum computer
- youtu.be/9aOLwjUZLm0?t=2354 hidden shift algorithm
- youtu.be/9aOLwjUZLm0?t=2740 Zhang et al. Nature 2017 paper about a 53 ion system that calculates something that cannot be classically calculated. Not fully controllable though, so more of a continuous-variable quantum information operation.
- youtu.be/9aOLwjUZLm0?t=2923 usage of cooling to 4 K to get lower pressures on top of vacuum. Before this point all experiments were room temperature. Shows image of refrigerator labelled Janis cooler, presumably something like: qd-uki.co.uk/cryogenics/janis-recirculating-gas-coolers/
- youtu.be/9aOLwjUZLm0?t=2962 qubit vs gates plot by H. Neven
- youtu.be/9aOLwjUZLm0?t=3108 modular trapped ion quantum computer ideas. Mentions experiment with 2 separate systems with optical link. Miniaturization and their black box. Mentions again that their chip is from Sandia. Amazing how you pronounce that.
Nature is a black box, right?
You don't need to understand the from first principles derivation of every single phenomena.
And most important of all: you should not start learning phenomena by reading the from first principles derivation.
Instead, you should see what happens in experiments, and how matches some known formula (which hopefully has been derived from first principles).
Only open the boxes (understand from first principles derivation) if the need is felt!
E.g.:
- you don't need to understand everything about why SQUID devices have their specific I-V curve curve. You have to first of all learn what the I-V curve would be in an experiment!
- you don't need to understand the fine details of how cavity magnetrons work. What you need to understand first is what kind of microwave you get from what kind of input (DC current), and how that compares to other sources of microwaves
- lasers: same
Physics is all about predicting the future. If you can predict the future with an end result, that's already predicting the future, and valid.
This is by far the most important type of laser commercially, as it can be made relatively cheaply, and it doesn't break easily as it ends up being a single crystal.
Compare them for example to the earlier gas lasers.
This is the type of laser that you would get in a simple laser pointer.
But the real mega aplications are:
- fiber-optic communication, where laser diodes are one of the most commonly used methods to generate the light that goes in the fiber. This makes laser diodes one of the most important inventions of the 20th centure without doubt.
- optical storage. But as of the 2020s its usefulness was much diminished by a combination of solid-state storage + faster Internet due largely to fiber-optic communication. So it is partly a matter of laser diodes beating laser diodes!
Spectrum of laser light by Shaoul Ezekiel
. Source. 2008, MIT.The key advantages of lasers over other light sources are:
- lasers emit a narrow spectrum
- it can be efficient collimated, while still emitting a lot of output power: Section "Why can't you collimate incoherent light as well as a laser?"
- can be phase and polarization coherent, though it is not always the case? TODO.
One cool thing about lasers is that they rely on one specific atomic energy level transition to produce light. This is why they are able to to be so monchromatic. Compare this to:As such, lasers manage to largely overcome "temperature distribution-like" effects that create wider wave spectrum
- incandescent bulbs: wide black-body radiation spectrum
- LED: has a wider spectrum fundamentally related to an energy distribution, related: Why aren't LEDs monochromatic
- TODO think a bit about fluorescent lamps. These also rely on atomic energy transitions, but many of them are present at once, which makes the spectrum very noisy. But would individual lines be very narrow?
From a practical point of view single-mode:As such, typical applications are:
- upside: can go further without a repeater. In multi-mode optical fiber, different modes travel at different speeds, and start interfering with each other at some point
- downside: lower bandwitdh, because we can fit less modes into it
- single-mode optical fiber: longer distance communications across buildings and cities
- multi-mode optical fiber: shorter distance communications e.g. within a single data center
Then there are some more hardcore threads actually pondering about specific cost trade-offs:
From a mathematical point of view:
- multi-mode: en.wikipedia.org/w/index.php?title=Optical_fiber&oldid=1229833804#Multi-mode_fiber:
Fiber with large core diameter (greater than 10 micrometers) may be analyzed by geometrical optics. Such fiber is called multi-mode fiber. In a step-index multi-mode fiber, rays of light are guided along the fiber core by total internal reflection.
- single-mode: en.wikipedia.org/w/index.php?title=Optical_fiber&oldid=1229833804#Single-mode_fiber:
Fiber with a core diameter less than about ten times the wavelength of the propagating light cannot be modeled using geometric optics. Instead, it must be analyzed as an electromagnetic waveguide structure, according to Maxwell's equations as reduced to the electromagnetic wave equation. As an optical waveguide, the fiber supports one or more confined transverse modes by which light can propagate along the fiber. Fiber supporting only one mode is called single-mode.
Another difference is that single-mode fiber usually uses lasers as the light soruce, while multi-mode fiber usually uses LED:
Bibliography:
- en.wikipedia.org/wiki/Speed_of_light#First_measurement_attempts Rømer and Christiaan Huygens reached 26% accuracy by the observation of Jupiter's moon!
Replicating the Fizeau Apparatus by AlphaPhoenix (2018)
Source. Modern reconstruction with a laser and digital camera.Do electrons spontaneously jump from high orbitals to lower ones emitting photons?
Explaining this was was one of the key initial achievements of the Dirac equation.
Yes, but this is not predicted by the Schrödinger equation, you need to go to the Dirac equation.
A critical application of this phenomena is laser.
See also:
- physics.stackexchange.com/questions/233330/why-do-electrons-jump-between-orbitals
- physics.stackexchange.com/questions/117417/quantum-mechanics-scattering-theory/522220#522220
- physics.stackexchange.com/questions/430268/stimulated-emission-how-can-giving-energy-to-electrons-make-them-decay-to-a-low/430288
Photon hits excited electron, makes that electron go down, and generates a new identical photon in the process, with the exact same:This is the basis of lasers.
- frequency
- polarization
- direction
Bibliography:
TODO understand.
Trapping Ions for Quantum Computing by Diana Craik (2019)
Source. A basic introduction, but very concrete, with only a bit of math it might be amazing:Sounds complicated, several technologies need to work together for that to work! Videos of ions moving are from www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing.
- youtu.be/j1SKprQIkyE?t=217 you need ultra-high vacuum
- youtu.be/j1SKprQIkyE?t=257 you put the Calcium on a "calcium oven", heat it up, and make it evaporates a little bit
- youtu.be/j1SKprQIkyE?t=289 you need lasers. You shine the laser on the calcium atom to eject one of the two valence electrons from it. Though e.g. Universal Quantum is trying to do away with them, because alignment for thousands or millions of particles would be difficult.
- youtu.be/j1SKprQIkyE?t=518 keeping all surrounding electrodes positive would be unstable. So they instead alternate electrode quickly between plus and minus
- youtu.be/j1SKprQIkyE?t=643 talks about the alternative, of doing it just with electrodes on a chip, which is easier to manufacture. They fly at about 100 microns above the trap. And you can have multiple ions per chip.
- youtu.be/j1SKprQIkyE?t=1165 using microwaves you can flip the spin of the electron, or put it into a superposition. From more reading, we understand that she is talking about a hyperfine transition, which often happen in the microwave area.
- youtu.be/j1SKprQIkyE?t=1210 talks about making quantum gates. You have to put the ions into a magnetic field at one of the two resonance frequencies of the system. Presumably what is meant is an inhomogenous magnetic field as in the Stern-Gerlach experiment.This is the hard and interesting part. It is not clear why the atoms become coupled in any way. Is it due to electric repulsion?She is presumably describing the Cirac–Zoller CNOT gate.
A major flaw of this presentation is not explaining the readout process.
How To Trap Particles in a Particle Accelerator by the Royal Institution (2016)
Source. Demonstrates trapping pollen particles in an alternating field.Ion trapping and quantum gates by Wolfgang Ketterle (2013)
Source. - youtu.be/lJOuPmI--5c?t=1601 Cirac–Zoller CNOT gate was the first 2 qubit gate. Explains it more or less.
Introduction to quantum optics by Peter Zoller (2018)
Source. THE Zoller from Cirac–Zoller CNOT gate talks about his gate.- www.youtube.com/watch?v=W3l0QPEnaq0&t=427s shows that the state is split between two options: center of mass mode (ions move in same direction), and strechmode (atoms move in opposite directions)
- youtu.be/W3l0QPEnaq0?t=658 shows a schematic of the experiment
As of 2021, their location is a small business park in Haywards Heath, about 15 minutes north of Brighton[ref]
Funding rounds:
- 2022:
- 67m euro contract with the German government: www.uktech.news/deep-tech/universal-quantum-german-contract-20221102 Both co-founders are German. They then immediatly announced several jobs in Hamburg: apply.workable.com/universalquantum/?lng=en#jobs so presumably linked to the Hamburg University of Technology campus of the German Aerospace Center.
- medium.com/@universalquantum/universal-quantum-wins-67m-contract-to-build-the-fully-scalable-trapped-ion-quantum-computer-16eba31b869e
- 2021: $10M (7.5M GBP) grant from the British Government: www.uktech.news/news/brighton-universal-quantum-wins-grant-20211105This grant is very secretive, very hard to find any other information about it! Most investment trackers are not listing it.The article reads:Interesting!
Universal Quantum will lead a consortium that includes Rolls-Royce, quantum developer Riverlane, and world-class researchers from Imperial College London and The University of Sussex, among others.
A but further down the article gives some more information of partners, from which some of the hardware vendors can be deduced:The consortium includes end-user Rolls-Royce supported by the Science and Technology Facilities Council (STFC) Hartree Centre, quantum software developer Riverlane, supply chain partners Edwards, TMD Technologies (now acquired by Communications & Power Industries (CPI)) and Diamond Microwave
- Edwards is presumably Edwards Vacuum, since we know that trapped ion quantum computers rely heavily on good vacuum systems. Edwards Vacuum is also located quite close to Universal Quantum as of 2022, a few minutes drive.
- TMD Technologies is a microwave technology vendor amongst other things, and we know that microwaves are used e.g. to initialize the spin states of the ions
- Diamond Microwave is another microwave stuff vendor
The money comes from UK's "Industrial Strategy Challenge Fund".www.riverlane.com/news/2021/12/riverlane-joins-7-5-million-consortium-to-build-error-corrected-quantum-processor/ gives some more details on the use case provided by Rolls Royce:The work with Rolls Royce will explore how quantum computers can develop practical applications toward the development of more sustainable and efficient jet engines.This starts by applying quantum algorithms to take steps to toward a greater understanding of how liquids and gases flow, a field known as 'fluid dynamics'. Simulating such flows accurately is beyond the computational capacity of even the most powerful classical computers today.This funding was part of a larger quantum push by the UKNQTP: www.ukri.org/news/50-million-in-funding-for-uk-quantum-industrial-projects/ - 2020: $4.5M (3.5M GBP) www.crunchbase.com/organization/universal-quantum. Just out of stealth.
Co-founders:
- Sebastian Weidt. He is German, right? Yes at youtu.be/SwHaJXVYIeI?t=1078 from Video 3. "Fireside Chat with with Sebastian Weidt by Startup Grind Brighton (2022)". The company was founded by two Germans from Essex!
- Winfried Hensinger: if you saw him on the street, you'd think he plays in a punk-rock band. That West Berlin feeling.
Homepage says only needs cooling to 70 K. So it doesn't work with liquid nitrogen which is 77 K?
Homepage points to foundational paper: www.science.org/doi/10.1126/sciadv.1601540
Universal Quantum emerges out of stealth by University of Sussex (2020)
Source. Explains that a more "traditional" trapped ion quantum computer would user "pairs of lasers", which would require a lot of lasers. Their approach is to try and do it by applying voltages to a microchip instead.- youtu.be/rYe9TXz35B8?t=127 shows some 3D models. It shows how piezoelectric actuators are used to align or misalign some plates, which presumably then determine conductivity
Quantum Computing webinar with Sebastian Weidt by Green Lemon Company (2020)
Source. The sound quality is to bad to stop and listen to, but it presumaby shows the coding office in the background.Fireside Chat with with Sebastian Weidt by Startup Grind Brighton (2022)
Source. Very basic target audience:- youtu.be/SwHaJXVYIeI?t=680 we are not at a point where you can buy victory. There is too much uncertainty involved across different approaches.
- youtu.be/SwHaJXVYIeI?t=949 his background
- youtu.be/SwHaJXVYIeI?t=1277 difference between venture capitalists in different countries
- youtu.be/SwHaJXVYIeI?t=1535 they are 33 people now. They've just setup their office in Haywards Heath, north of Bristol.
Rounds:
www.youtube.com/watch?v=v7iAqcFCTQQ shows their base technology:
- laser beam comes in
- input set via of optical ring resonators that form a squeezed state of light. Does not seem to rely on single photon production and detection experiments?