Like the rest of the Standard Model Lagrangian, this can be split into two parts:
- spacetime symmetry: reaches the derivation of the Dirac equation, but has no interactions
- add the internal symmetry to add interactions, which reaches the full equation
Originally it was likely created to study constrained mechanical systems where you want to use some "custom convenient" variables to parametrize things instead of global x, y, z. Classical examples that you must have in mind include:
- compound Atwood machine. Here, we can use the coordinates as the heights of masses relative to the axles rather than absolute heights relative to the ground
- double pendulum, using two angles. The Lagrangian approach is simpler than using Newton's laws
- pendulum, use angle instead of x/y
- two-body problem, use the distance between the bodieslagrangian mechanics lectures by Michel van Biezen (2017) is a good starting point.
When doing lagrangian mechanics, we just lump together all generalized coordinates into a single vector that maps time to the full state:where each component can be anything, either the x/y/z coordinates relative to the ground of different particles, or angles, or nay other crazy thing we want.
Then, the stationary action principle says that the actual path taken obeys the Euler-Lagrange equation:This produces a system of partial differential equations with:
- equations
- unknown functions
- at most second order derivatives of . Those appear because of the chain rule on the second term.
The mixture of so many derivatives is a bit mind mending, so we can clarify them a bit further. At:the is just identifying which argument of the Lagrangian we are differentiating by: the i-th according to the order of our definition of the Lagrangian. It is not the actual function, just a mnemonic.
Then at:
- the part is just like the previous term, just identifies the argument with index ( because we have the non derivative arguments)
- after the partial derivative is taken and returns a new function , then the multivariable chain rule comes in and expands everything into terms
However, people later noticed that the Lagrangian had some nice properties related to Lie group continuous symmetries.
Basically it seems that the easiest way to come up with new quantum field theory models is to first find the Lagrangian, and then derive the equations of motion from them.
For every continuous symmetry in the system (modelled by a Lie group), there is a corresponding conservation law: local symmetries of the Lagrangian imply conserved currents.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Genius: Richard Feynman and Modern Physics by James Gleick (1994) chapter "The Best Path" mentions that Richard Feynman didn't like the Lagrangian mechanics approach when he started university at MIT, because he felt it was too magical. The reason is that the Lagrangian approach basically starts from the principle that "nature minimizes the action across time globally". This implies that things that will happen in the future are also taken into consideration when deciding what has to happen before them! Much like the lifeguard in the lifegard problem making global decisions about the future. However, chapter "Least Action in Quantum Mechanics" comments that Feynman later notice that this was indeed necessary while developping Wheeler-Feynman absorber theory into quantum electrodynamics, because they felt that it would make more sense to consider things that way while playing with ideas such as positrons are electrons travelling back in time. This is in contrast with Hamiltonian mechanics, where the idea of time moving foward is more directly present, e.g. as in the Schrödinger equation.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
And partly due to the above observations, it was noticed that the easiest way to describe the fundamental laws of particle physics and make calculations with them is to first formulate their Lagrangian somehow: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s.
TODO advantages:
- physics.stackexchange.com/questions/254266/advantages-of-lagrangian-mechanics-over-newtonian-mechanics on Physics Stack Exchange, fucking closed question...
- www.quora.com/Why-was-Lagrangian-formalism-needed-in-the-presence-of-Newtonian-formalism
- www.researchgate.net/post/What_is_the_advantage_of_Lagrangian_formalism_over_Hamiltonian_formalism_in_QFT
Bibliography:
- www.physics.usu.edu/torre/6010_Fall_2010/Lectures.html Physics 6010 Classical Mechanics lecture notes by Charles Torre from Utah State University published on 2010,
- Classical physics only. The last lecture: www.physics.usu.edu/torre/6010_Fall_2010/Lectures/12.pdf mentions Lie algebra more or less briefly.
- www.damtp.cam.ac.uk/user/tong/dynamics/two.pdf by David Tong
The key and central motivation for studying Lie groups and their Lie algebras appears to be to characterize symmetry in Lagrangian mechanics through Noether's theorem, just start from there.
Notably local symmetries appear to map to forces, and local means "around the identity", notably: local symmetries of the Lagrangian imply conserved currents.
More precisely: local symmetries of the Lagrangian imply conserved currents.
TODO Ciro Santilli really wants to understand what all the fuss is about:
Oh, there is a low dimensional classification! Ciro is a sucker for classification theorems! en.wikipedia.org/wiki/Classification_of_low-dimensional_real_Lie_algebras
The fact that there are elements arbitrarily close to the identity, which is only possible due to the group being continuous, is the key factor that simplifies the treatment of Lie groups, and follows the philosophy of continuous problems are simpler than discrete ones.
Bibliography:
- youtu.be/kpeP3ioiHcw?t=2655 "Particle Physics Topic 6: Lie Groups and Lie Algebras" by Alex Flournoy (2016). Good SO(3) explicit exponential expansion example. Then next lecture shows why SU(2) is the representation of SO(3). Next ones appear to eventually get to the physical usefulness of the thing, but I lost patience. Not too far out though.
- www.youtube.com/playlist?list=PLRlVmXqzHjURZO0fviJuyikvKlGS6rXrb "Lie Groups and Lie Algebras" playlist by XylyXylyX (2018). Tutorial with infinitely many hours
- www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf
- www.physics.drexel.edu/~bob/LieGroups.html
What does it mean that photons are force carriers for electromagnetism? Updated 2024-12-15 +Created 1970-01-01
TODO find/create decent answer.
I think the best answer is something along:
- local symmetries of the Lagrangian imply conserved currents. gives conserved charges.
- OK now. We want a local symmetry. And we also want:Given all of that, the most obvious and direct thing we reach a guess at the quantum electrodynamics Lagrangian is Video "Deriving the qED Lagrangian by Dietterich Labs (2018)"
- Dirac equation: quantum relativistic Newton's laws that specify what forces do to the fields
- electromagnetism: specifies what causes forces based on currents. But not what it does to masses.
A basic non-precise intuition is that a good model of reality is that electrons do not "interact with one another directly via the electromagnetic field".
A better model happens to be the quantum field theory view that the electromagnetic field interacts with the photon field but not directly with itself, and then the photon field interacts with parts of the electromagnetic field further away.
The more precise statement is that the photon field is a gauge field of the electromagnetic force under local U(1) symmetry, which is described by a Lie group. TODO understand.
This idea was first applied in general relativity, where Einstein understood that the "force of gravity" can be understood just in terms of symmetry and curvature of space. This was later applied o quantum electrodynamics and the entire Standard Model.
From Video "Lorenzo Sadun on the "Yang-Mills and Mass Gap" Millennium problem":
- www.youtube.com/watch?v=pCQ9GIqpGBI&t=1663s mentions this idea first came about from Hermann Weyl.
- youtu.be/pCQ9GIqpGBI?t=2827 mentions that in that case the curvature is given by the electromagnetic tensor.
Bibliography:
- www.youtube.com/watch?v=qtf6U3FfDNQ Symmetry and Quantum Electrodynamics (The Standard Model Part 1) by ZAP Physics (2021)
- www.youtube.com/watch?v=OQF7kkWjVWM The Symmetry and Simplicity of the Laws of Nature and the Higgs Boson by Juan Maldacena (2012). Meh, also too basic.
- www.youtube.com/watch?v=-_qNKbwM_eE Unsolved: Yang-Mills existence and mass gap by J Knudsen (2019). Gives 10 key points, but the truly hard ones are too quick. He knows the thing though.