Given enough computational power per dollar, AGI is inevitable, but it is not sure certain ever happen given the end of end of Moore's Law.
Alternatively, it could also be achieved genetically modified biological brains + brain in a vat.
Imagine a brain the size of a building, perfectly engineered to solve certain engineering problems, and giving hints to human operators + taking feedback from cameras and audio attached to the operators.
This likely implies transhumanism, and mind uploading.
Ciro Santilli joined the silicon industry at one point to help increase our computational capacity and reach AGI.
Ciro believes that the easiest route to full AI, if any, could involve Ciro's 2D reinforcement learning games.
Ciro Santilli has felt that perhaps what is missing in 2020's AGI research is:
- the interface between:The key question is somewhat how to extract symbols out of the space-time continuous experiences.
- the continuous/noisy level (now well developed under artificial neural network techniques of the 2010's)
- and symbolic AI level AI
- more specialized accelerators that somehow interface with more generic artificial neural networks. Notably some kind of speialized processing of spacial elements is obviously hardcoded into the brain, see e.g. Section "Grid cell "
Forcing these boundaries to be tested was one of the main design goals of Ciro's 2D reinforcement learning games.
In those games, for example:Therefore, those continuous objects would also have "magic" effects that could not be explained by "simple" "what is touching what" ideas.
- when you press a button here, a door opens somewhere far away
- when you touch certain types of objects, a chemical reaction may happen, but not other types of objects
Bibliography:
This point is beautifully argued in lots of different sources, and is clearly a pillar of AGI.
Perhaps one may argue that our deep learning layers do form some kind of hierarchy, e.g. this is very clear in certain models such as convolutional neural network. But many of those models cannot have arbitrarily deep hierarchies, which appears to be a fundamental aspect of intelligence.
How to Create a Mind:
The lists of steps in my mind are organized in hierarchies. I follow a routine procedure before going to sleep. The first step is to brush my teeth. But this action is in turn broken into a smaller series of steps, the first of which is to put toothpaste on the toothbrush. That step in turn is made up of yet smaller steps, such as finding the toothpaste, removing the cap, and so on. The step of finding the toothpaste also has steps, the first of which is to open the bathroom cabinet. That step in turn requires steps, the first of which is to grab the outside of the cabinet door. This nesting actually continues down to a very fine grain of movements, so that there are literally thousands of little actions constituting my nighttime routine. Although I may have difficulty remembering details of a walk I took just a few hours ago, I have no difficulty recalling all of these many steps in preparing for bed - so much so that I am able to think about other things while I go through these procedures. It is important to point out that this list is not stored as one long list of thousands of steps - rather, each of our routine procedures is remembered as an elaborate hierarchy of nested activities.
Human Compatible: TODO get exact quote. It was something along: life goal: save world from hunger. Subgoal: apply for some grant. Sub-sub-goal: eat, sleep, take shower. Sub-sub-sub-goal: move muscles to get me to table and open a can.
This section is about ideas that are thought to be part of an AGI system.
Term invented by Ciro Santilli, similar to "nuclear blues", and used to describe the feeling that every little shitty job you are doing (that does not considerably help achieving AGI) is completely pointless given that we are likely close to AGI as of 2023.
Due to the failures of earlier generations, which believed that would quickly achieve AGI, leading to the AI winters, 21st researchers have been very afraid of even trying it, rather going only for smaller subste problems like better neural network designs, at the risk of being considered a crank.
While there is fundamental value in such subset problems, the general view to the final goal is also very important, we will likely never reach AI without it.
This is voiced for example in Superintelligence by Nick Bostrom (2014) section "Opinions about the future of machine intelligence" which in turn quotes Nils Nilsson:
There may, however, be a residual cultural effect on the AI community of its earlier history that makes many mainstream researchers reluctant to align themselves with over-grand ambition. Thus Nils Nilsson, one of the old-timers in the field, complains that his present-day colleagues lack the boldness of spirit that propelled the pioneers of his own generation:Concern for "respectability" has had, I think, a stultifying effect on some AI researchers. I hear them saying things like, "AI used to be criticized for its flossiness. Now that we have made solid progress, let us not risk losing our respectability." One result of this conservatism has been increased concentration on "weak AI" - the variety devoted to providing aids to human thought - and away from "strong AI" - the variety that attempts to mechanize human-level intelligenceNilsson’s sentiment has been echoed by several others of the founders, including Marvin Minsky, John McCarthy, and Patrick Winston.
Don't be a pussy, AI researchers!!!
It is hard to overstate how low the level of this conference seems to be at first sight. Truly sad.
- www.quora.com/What-are-some-good-research-schools-PhD-for-Artificial-General-Intelligence-not-Machine-Learning/answer/Ciro-Santilli What are some good research schools (PhD) for Artificial General Intelligence (not Machine Learning)?
- 2020 towardsdatascience.com/four-ai-companies-on-the-bleeding-edge-of-artificial-general-intelligence-b17227a0b64a Top 4 AI companies leading in the race towards Artificial General Intelligence
- Douglas Hofstadter according to www.theatlantic.com/magazine/archive/2013/11/the-man-who-would-teach-machines-to-think/309529/ The Man Who Would Teach Machines to Think (2013) by James Somers
- Pei Wang from Temple University: cis.temple.edu/~wangp/
By the rich founder of Mt. Gox and Ripple, Jed McCaleb.
Obelisk is the Artificial General Intelligence laboratory at Astera. We are focused on the following problems: How does an agent continuously adapt to a changing environment and incorporate new information? In a complicated stochastic environment with sparse rewards, how does an agent associate rewards with the correct set of actions that led to those rewards? How does higher level planning arise?
Interesting dude, with some interest overlaps with Ciro Santilli, like Quantum computing:
Marek Rosa's play thing.
It is a bit hard to decide if those people are serious or not. Sometimes it feels scammy, but sometimes it feels fun and right!
Particularly concerning is the fact that they are not a not-for-profit entity, and it is hard to understand how they might make money.
Charles Simon, the founder, is pretty focused in how natural neurons work vs artificial neural network models. He has some good explanations of that, and one major focus of the project is their semi open source spiking neuron simulator BrainSimII. While Ciro Santilli believes that there might be insight in that, he also has doubts if certain modules of the brain wouldn't be more suitable coded directly in regular programming languages with greater ease and performance.
FutureAI appears to be Charles' retirement for fun project, he is likely independently wealthy. Well done.
- www.aitimejournal.com/interview-with-charles-simon-ceo-and-founder-futureai
- 2022 raised 2 million USD:
The video from futureai.guru/technologies/brian-simulator-ii-open-source-agi-toolkit/ shows a demo of the possibly non open source version. They have a GUI neuron viewer and editor, which is kind of cool.
Not having a manipulator claw is a major issue with this one.
But they also have a co-simulation focus, which is a bit of a win.
Basically it looks like the dude got enough money after selling some companies, and now he's doing cooler stuff without much need of money. Not bad.
www.reddit.com/r/artificial/comments/b38hbk/what_do_my_fellow_ai_researchers_think_of_ben/ What do my fellow AI researchers think of Ben Goertzel and his research?
Term invented by Ciro Santilli to refer to problems that can only be solved once we have AGI.
It is somewhat of a flawed analogy to NP-complete.
That's Ciro Santilli's favorite. Of course, there is a huge difference between physical and non physical jobs. But one could start with replacing desk jobs!
AGI-complete in general? Obviously. But still, a lot can be done. See e.g.:
- The Busy Beaver Challenge deciders
Original paper: Section "GAN paper".
The GAN paper itself does a bit of this, cool hello world:
Generative adversarial network illustrates well AI brittleness. The input looks obvious for a human, but gets completely misclassified by a deep learning agent.
This is going to be the most important application of generative AI. Especially if we ever achieve good text-to-video.
Image generators plus human ranking:
- pornpen.ai/ a bit too restrictive. Girl laying down. Girl sitting. Penis or no penis. But realtively good at it
- civitai.tv/. How to reach it: civitai.tv/tag/nun/2/
www.pornhub.com/view_video.php?viewkey=ph63c71351edece: Heavenly Bodies Part 1: Sister's Mary First Act. Pornhub title: "AI generated Hentai Story: Sexy Nun alternative World(Isekai) Stable Diffusion" Interesting concept, slide-narrated over visual novel. The question is how they managed to keep face consistency across images.
Very useful for idiotic websites that require real photos!
- thispersondoesnotexist.com/ holy fuck, the images are so photorealistic, that when there's a slight fail, it is really, really scary
This just works, but it is also so incredibly slow that it is useless (or at least the quality it reaches in the time we have patience to wait from), at least on any setup we've managed to try, including e.g. on an Nvidia A10G on a g5.xlarge. Running:
would likely take hours to complete.
time imagine "a house in the forest"
Conda install is a bit annoying, but gets the job done. The generation quality is very good.
Someone should package this better for end user "just works after Conda install" image generation, it is currently much more of a library setup.
Tested on Amazon EC2 on a g5.xlarge machine, which has an Nvidia A10G, using the AWS Deep Learning Base GPU AMI (Ubuntu 20.04) image.
First install Conda as per Section "Install Conda on Ubuntu", and then just follow the instructions from the README, notably the Reference sampling script section.
This took about 2 minutes and generated 6 images under
git clone https://github.com/runwayml/stable-diffusion
cd stable-diffusion/
git checkout 08ab4d326c96854026c4eb3454cd3b02109ee982
conda env create -f environment.yaml
conda activate ldm
mkdir -p models/ldm/stable-diffusion-v1/
wget -O models/ldm/stable-diffusion-v1/model.ckpt https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
outputs/txt2img-samples/samples
, includining an image outputs/txt2img-samples/grid-0000.png
which is a grid montage containing all the six images in one:TODO how to change the number of images?
A quick attempt at removing their useless safety features (watermark and NSFW text filter) is:
but that produced 4 black images and only two unfiltered ones. Also likely the lack of sexual training data makes its porn suck, and not in the good way.
diff --git a/scripts/txt2img.py b/scripts/txt2img.py
index 59c16a1..0b8ef25 100644
--- a/scripts/txt2img.py
+++ b/scripts/txt2img.py
@@ -87,10 +87,10 @@ def load_replacement(x):
def check_safety(x_image):
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
- assert x_checked_image.shape[0] == len(has_nsfw_concept)
- for i in range(len(has_nsfw_concept)):
- if has_nsfw_concept[i]:
- x_checked_image[i] = load_replacement(x_checked_image[i])
+ #assert x_checked_image.shape[0] == len(has_nsfw_concept)
+ #for i in range(len(has_nsfw_concept)):
+ # if has_nsfw_concept[i]:
+ # x_checked_image[i] = load_replacement(x_checked_image[i])
return x_checked_image, has_nsfw_concept
@@ -314,7 +314,7 @@ def main():
for x_sample in x_checked_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
- img = put_watermark(img, wm_encoder)
+ # img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
Open source software reviews by Ciro Santilli:reviewing mostly the following software:
- askubuntu.com/questions/24059/automatically-generate-subtitles-close-caption-from-a-video-using-speech-to-text/1522895#1522895
- askubuntu.com/questions/161515/speech-recognition-app-to-convert-mp3-voice-to-text/1499768#1499768
- unix.stackexchange.com/questions/256138/is-there-any-decent-speech-recognition-software-for-linux/613392#613392
Hello world: askubuntu.com/questions/380847/is-it-possible-to-translate-words-via-terminal/1309774#1309774
- 2023 vimalabs.github.io/ VIMA: General Robot Manipulation with Multimodal Prompts
Published as: arxiv.org/pdf/2304.03442.pdf Generative Agents: Interactive Simulacra of Human Behavior by Park et al.
Highly automated wrapper for various open source LLMs.
curl https://ollama.ai/install.sh | sh
ollama run llama2
And bang, a download later, you get a prompt. On P14s it runs on CPU and generates a few tokens at a time, which is quite usable for a quick interactive play.
As mentioned at github.com/jmorganca/ollama/blob/0174665d0e7dcdd8c60390ab2dd07155ef84eb3f/docs/faq.md the downloads to under
/usr/share/ollama/.ollama/models/
and ncdu tells me:
--- /usr/share/ollama ----------------------------------
3.6 GiB [###########################] /.ollama
4.0 KiB [ ] .bashrc
4.0 KiB [ ] .profile
4.0 KiB [ ] .bash_logout
We can also do it non-interactively with:
which gave me:
but note that there is a random seed that affects each run by default.
/bin/time ollama run llama2 'What is quantum field theory?'
0.13user 0.17system 2:06.32elapsed 0%CPU (0avgtext+0avgdata 17280maxresident)k
0inputs+0outputs (0major+2203minor)pagefaults 0swaps
Some other quick benchmarks from Amazon EC2 GPU, on Nvidia T4:
On Nvidia A10G:
0.07user 0.05system 0:16.91elapsed 0%CPU (0avgtext+0avgdata 16896maxresident)k
0inputs+0outputs (0major+1960minor)pagefaults 0swaps
0.03user 0.05system 0:09.59elapsed 0%CPU (0avgtext+0avgdata 17312maxresident)k
8inputs+0outputs (1major+1934minor)pagefaults 0swaps
So it's not too bad, a small article in 10s.
It tends to babble quite a lot by default, but eventually decides to stop.
TODO is it possible to make it deterministic on the CLI? There is a "seed" parameter somewhere: github.com/jmorganca/ollama/blob/31f0551dab9a10412ec6af804445e02a70a25fc2/docs/modelfile.md#parameter
By Ciro Santilli:
Other threads:
- www.reddit.com/r/MachineLearning/comments/12kjof5/d_what_is_the_best_open_source_text_to_speech/
- www.reddit.com/r/software/comments/176asxr/best_open_source_texttospeech_available/
- www.reddit.com/r/opensource/comments/19cguhx/i_am_looking_for_tts_software/
- www.reddit.com/r/LocalLLaMA/comments/1dtzfte/best_tts_model_right_now_that_i_can_self_host/
This was the Holy Grail as of 2023, when text-to-image started to really take off, but text-to-video was miles behind.
Articles by others on the same topic
There are currently no matching articles.