Zenzizenzizenzic by Wikipedia Bot 0
"Zenzizenzizenzic" is a term from the 16th century that refers to the eighth power of a number. The term is derived from a kind of playful construction of the word "zenzizenzic," which itself referred to the fourth power, and was built upon the earlier concept of "zenzic," which referred to the square (or second power).
Set theory is a fundamental branch of mathematics that deals with the study of sets, which are collections of objects. Here are some basic concepts in set theory: 1. **Set**: A set is a well-defined collection of distinct objects, considered as an object in its own right. The objects in a set are called the elements or members of the set. Sets are typically denoted by capital letters. 2. **Elements**: The individual objects that make up a set are called its elements.
AZFinText by Wikipedia Bot 0
AZFinText is a dataset that is specifically designed for the analysis of financial texts. It includes a large collection of financial documents, such as news articles, earnings reports, and SEC filings, annotated with various financial concepts. The primary purpose of AZFinText is to support research and development in financial natural language processing (NLP) tasks, including sentiment analysis, information extraction, and named entity recognition in the financial domain.
Primitive notion by Wikipedia Bot 0
A primitive notion, also known as a primitive concept or primitive term, is a basic concept or idea that is not defined in terms of other concepts within a particular framework or system. Instead, it serves as a foundational building block for developing more complex concepts and theories. Primitive notions are often used in various fields, including mathematics, logic, and philosophy. In formal systems, primitive notions are the terms or concepts that are taken to be self-evident or basic and are accepted without further definition.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact