Representation theory by Ciro Santilli 35 Updated +Created
Basically, a "representation" means associating each group element as an invertible matrices, i.e. a matrix in (possibly some subset of) , that has the same properties as the group.
Or in other words, associating to the more abstract notion of a group more concrete objects with which we are familiar (e.g. a matrix).
Each such matrix then represents one specific element of the group.
This is basically what everyone does (or should do!) when starting to study Lie groups: we start looking at matrix Lie groups, which are very concrete.
Or more precisely, mapping each group element to a linear map over some vector field (which can be represented by a matrix infinite dimension), in a way that respects the group operations:
As shown at Physics from Symmetry by Jakob Schwichtenberg (2015)
  • page 51, a representation is not unique, we can even use matrices of different dimensions to represent the same group
  • 3.6 classifies the representations of . There is only one possibility per dimension!
  • 3.7 "The Lorentz Group O(1,3)" mentions that even for a "simple" group such as the Lorentz group, not all representations can be described in terms of matrices, and that we can construct such representations with the help of Lie group theory, and that they have fundamental physical application
Bibliography:
Very good jazz album by Ciro Santilli 35 Updated +Created
Research institute model by Ciro Santilli 35 Updated +Created
Pharmaceutical company by Ciro Santilli 35 Updated +Created
Generalized Poincaré conjecture by Ciro Santilli 35 Updated +Created
There are two cases:
  • (topological) manifolds
  • differential manifolds
Questions: are all compact manifolds / differential manifolds homotopic / diffeomorphic to the sphere in that dimension?
  • for topological manifolds: this is a generalization of the Poincaré conjecture.
    Original problem posed, for topological manifolds.
    Last to be proven, only the 4-differential manifold case missing as of 2013.
    Even the truth for all was proven in the 60's!
    Why is low dimension harder than high dimension?? Surprise!
    AKA: classification of compact 3-manifolds. The result turned out to be even simpler than compact 2-manifolds: there is only one, and it is equal to the 3-sphere.
    For dimension two, we know there are infinitely many: classification of closed surfaces
  • for differential manifolds:
    Not true in general. First counter example is . Surprise: what is special about the number 7!?
    Counter examples are called exotic spheres.
    Totally unpredictable count table:
    DimensionSmooth types
    11
    21
    31
    4?
    51
    61
    728
    82
    98
    106
    11992
    121
    133
    142
    1516256
    162
    1716
    1816
    19523264
    2024
    is an open problem, there could even be infinitely many. Again, why are things more complicated in lower dimensions??
Allen Institute by Ciro Santilli 35 Updated +Created
Electric charge by Ciro Santilli 35 Updated +Created
Howard Hughes Medical Institute by Ciro Santilli 35 Updated +Created
Janelia Research Campus by Ciro Santilli 35 Updated +Created
Company research institute by Ciro Santilli 35 Updated +Created
Ah, some of the coolest places on Earth?
Bell Labs by Ciro Santilli 35 Updated +Created
Ciro Santilli sometimes fantasizes of having worked there in their golden years...
Original headquarters and laboratories: 463 West Street in New York, Manhattan area. On Surely You're Joking, Mr. Feynman Feynman mentions that in 1941 they could see the construction of the George Washington Bridge, presumably from that building, when William Shockley brought him over to visit to get a job there. However, the actual
Bell Labs Holmdel Complex by Ciro Santilli 35 Updated +Created
101 Crawfords Corner Rd Holmdel, NJ 07733 USA
It started with radio research apparently, including Karl Guthe Jansky.
They had a smaller building first: youtu.be/BPq_ZyOvbsg?t=51 and in 1962 opened the large new building.
Video 1.
Holmdel 20th Anniversary by AT&T Tech Channel (1982)
Source.
Video 2.
N.J.’s historic Bell Labs complex brought back to life as Bell Works by nj.com (2022)
Source. Shows the renewed building after the Bell Labs Holmdel Complex closure.
Intrinsic standards by Ciro Santilli 35 Updated +Created
Bell Labs Murray Hill by Ciro Santilli 35 Updated +Created
600 Mountain Ave bldg 5, New Providence, NJ 07974, United States.
Became headquarters in 1967,
Drone footage: www.youtube.com/watch?v=z0Ld2KFjaC8 Bell LABS Headquarters Murray Hill NJ in 4K Drone Flight by ESTOUCHFPV (2017)
Notable inventions made there:
Paraphyly by Ciro Santilli 35 Updated +Created
Skunk Works by Ciro Santilli 35 Updated +Created
E. Coli K-12 by Ciro Santilli 35 Updated +Created
NNSA laboratory by Ciro Santilli 35 Updated +Created
Lexical category by Ciro Santilli 35 Updated +Created
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact