Chaotic rotation refers to a type of motion observed in dynamical systems where the rotation of an object does not follow a predictable or regular pattern. This concept is often studied in the context of chaotic systems, which are sensitive to initial conditions and can exhibit unpredictable behavior over time.
Chua's circuit is a well-known electronic circuit that exhibits chaotic behavior and is often used in the study of nonlinear dynamics and chaos theory. It was first proposed by Leon O. Chua in the 1980s and is notable for its simplicity and ability to demonstrate chaotic phenomena in a tangible way. **Structure of Chua's Circuit:** Chua's circuit typically consists of the following components: 1. **Resistors**: Used to control the flow of current.
The Duffing equation is a nonlinear second-order ordinary differential equation that describes certain types of oscillatory motion, particularly in mechanical systems with non-linear elasticity. It can capture phenomena such as hardening and softening behaviors in oscillators.
The Gingerbreadman map is a type of mathematical model used in the study of chaos theory. It is a discrete dynamical system that represents a two-dimensional map. The name "Gingerbreadman" comes from the shape of the trajectories that the system exhibits, which can resemble the shape of a gingerbread man when plotted on a graph. The Gingerbreadman map is defined through a set of iterative equations that describe how a point in the plane evolves over time.
An **interval exchange transformation** (IET) is a mathematical concept used in the field of dynamical systems and ergodic theory. It involves a way of rearranging segments of an interval (typically the unit interval \([0, 1]\)) by applying a transformation that is defined by splitting the interval into several subintervals of specific lengths, then permuting those subintervals according to a specific rule.
"Kicked rotator" is not a widely recognized term in popular use, but it may refer to a concept in one of several contexts, such as mechanics, robotics, or gaming. Without additional context, it's challenging to provide an accurate definition. If you mean a specific mechanical part or a technique in a particular field, could you provide more details?
Boyer-Lindquist coordinates are a specific way of expressing the spacetime around a rotating black hole, particularly the Kerr black hole solution in general relativity. These coordinates are a modification of spherical coordinates that take into account the effects of rotation and are particularly useful for analyzing the properties of rotating black holes. In Boyer-Lindquist coordinates, the spacetime is described using four coordinates: 1. **Time (t)**: Represents the time coordinate for an observer at infinity.
Proactive maintenance is an approach to maintenance that aims to anticipate and prevent equipment failures before they occur. Unlike reactive maintenance, which involves responding to equipment breakdowns after they happen, proactive maintenance focuses on identifying potential issues and addressing them ahead of time to minimize downtime, extend the lifespan of assets, and optimize overall performance.
Homotopy theory is a branch of algebraic topology that studies the properties of topological spaces through the concept of homotopy, which is a mathematical equivalence relation on continuous functions. The main focus of homotopy theory is to understand the ways in which spaces can be transformed into each other through continuous deformation.
Surgery theory is a branch of geometric topology, which focuses on the study of manifolds and their properties by performing a kind of operation called surgery. The central idea of surgery theory is to manipulate manifold structures in a controlled way to produce new manifolds from existing ones. This can involve various operations, such as adding or removing handles, which change the topology of manifolds in a systematic manner.
A crossed module is a concept from the field of algebraic topology and homological algebra, particularly in the study of algebraic structures that relate groups and their actions. A crossed module consists of two groups \( G \) and \( H \) along with two homomorphisms: 1. A group homomorphism \( \partial: H \to G \) (called the boundary map).
A CW complex (pronounced "C-W complex") is a type of topological space that is particularly useful in algebraic topology. The term "CW" stands for "cellular" and "weak," referring to the construction method used to create such complexes. A CW complex is constructed using "cells," which are basic building blocks, typically in the shape of disks of different dimensions.
A pseudocircle is a mathematical concept related to the field of geometry, specifically in the study of topology and combinatorial geometry. The term can refer to a set of curves or shapes that exhibit certain properties similar to a circle but may not conform to the strict definition of a circle. In some contexts, a pseudocircle can also refer to a simple closed curve that is homeomorphic to a circle but may not have the same geometric properties as a traditional circle.
The Gysin homomorphism is a concept from algebraic topology and algebraic geometry, particularly in the study of cohomology theories, intersection theory, and the topology of manifolds. It is most commonly associated with the theory of fiber bundles and the intersection products in cohomology.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact