Calculus of variations by Ciro Santilli 37 Updated 2025-07-16
Calculus of variations is the field that searches for maxima and minima of Functionals, rather than the more elementary case of functions from to .
A critical system refers to a system that is essential for the functioning of a larger framework or operation, where failure or malfunction could result in significant consequences, such as safety hazards, financial loss, or disruption of services. Critical systems are commonly found in various domains, including: 1. **Safety-Critical Systems**: These are systems where a failure could lead directly to loss of life, significant property damage, or environmental harm.
Functional by Ciro Santilli 37 Updated 2025-07-16
A function that takes input function and outputs a real number.
Let's start with the one dimensional case. Let the and a Functional defined by a function of three variables :
Then, the Euler-Lagrange equation gives the maxima and minima of the that type of functional. Note that this type of functional is just one very specific type of functional amongst all possible functionals that one might come up with. However, it turns out to be enough to do most of physics, so we are happy with with it.
Given , the Euler-Lagrange equations are a system of ordinary differential equations constructed from that such that the solutions to that system are the maxima/minima.
In the one dimensional case, the system has a single ordinary differential equation:
By and we simply mean "the partial derivative of with respect to its second and third arguments". The notation is a bit confusing at first, but that's all it means.
Therefore, that expression ends up being at most a second order ordinary differential equation where is the unknown, since:
  • the term is a function of
  • the term is a function of . And so it's derivative with respect to time will contain only up to
Now let's think about the multi-dimensional case. Instead of having , we now have . Think about the Lagrangian mechanics motivation of a double pendulum where for a given time we have two angles.
Let's do the 2-dimensional case then. In that case, is going to be a function of 5 variables rather than 3 as in the one dimensional case, and the functional looks like:
This time, the Euler-Lagrange equations are going to be a system of two ordinary differential equations on two unknown functions and of order up to 2 in both variables:
At this point, notation is getting a bit clunky, so people will often condense the vector
or just omit the arguments of entirely:
Video 1.
Calculus of Variations ft. Flammable Maths by vcubingx (2020)
Source.
Equations of motion by Ciro Santilli 37 Updated 2025-07-16
These are the final equations that you derive from the Lagrangian via the Euler-Lagrange equation which specify how the system evolves with time.
Lagrangian density by Ciro Santilli 37 Updated 2025-07-16
When we particles particles, the action is obtained by integrating the Lagrangian over time:
In the case of field however, we can expand the Lagrangian out further, to also integrate over the space coordinates and their derivatives.
Since we are now working with something that gets integrated over space to obtain the total action, much like density would be integrated over space to obtain a total mass, the name "Lagrangian density" is fitting.
E.g. for a 2-dimensional field :
Of course, if we were to write it like that all the time we would go mad, so we can just write a much more condensed vectorized version using the gradient with :
And in the context of special relativity, people condense that even further by adding to the spacetime Four-vector as well, so you don't even need to write that separate pesky .
The main point of talking about the Lagrangian density instead of a Lagrangian for fields is likely that it treats space and time in a more uniform way, which is a basic requirement of special relativity: we have to be able to mix them up somehow to do Lorentz transformations. Notably, this is a key ingredient in a/the formulation of quantum field theory.
Generalized coordinate by Ciro Santilli 37 Updated 2025-07-16
The variables of the Lagrangian, e.g. the angles of a double pendulum. From that example it is clear that these variables don't need to be simple things like cartesian coordinates or polar coordinates (although these tend to be the overwhelming majority of simple case encountered): any way to describe the system is perfectly valid.
In quantum field theory, those variables are actually fields.
Noether's theorem by Ciro Santilli 37 Updated 2025-07-16
For every continuous symmetry in the system (Lie group), there is a corresponding conservation law.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
As mentioned at buzzard.ups.edu/courses/2017spring/projects/schumann-lie-group-ups-434-2017.pdf, what the symmetry (Lie group) acts on (obviously?!) are the Lagrangian generalized coordinates. And from that, we immediately guess that manifolds are going to be important, because the generalized variables of the Lagrangian can trivially be Non-Euclidean geometry, e.g. the pendulum lives on an infinite cylinder.
Video 1.
The most beautiful idea in physics - Noether's Theorem by Looking Glass Universe (2015)
Source. One sentence stands out: the generated quantities are called the generators of the transforms.
Video 2.
The Biggest Ideas in the Universe | 15. Gauge Theory by Sean Carroll (2020)
Source. This attempts a one hour hand wave explanation of it. It is a noble attempt and gives some key ideas, but it falls a bit short of Ciro's desires (as would anything that fit into one hour?)
Video 3.
The Symmetries of the universe by ScienceClic English (2021)
Source. youtu.be/hF_uHfSoOGA?t=144 explains intuitively why symmetry implies consevation!
Hamiltonian mechanics by Ciro Santilli 37 Updated 2025-07-16
Equivalent to Lagrangian mechanics but formulated in a different way.
TODO understand original historical motivation, www.youtube.com/watch?v=SZXHoWwBcDc says it is from optics.
Intuitively, the Hamiltonian is the total energy of the system in terms of arbitrary parameters, a bit like Lagrangian mechanics.
The key difference from Lagrangian mechanics is that the Hamiltonian approach groups variables into pairs of coordinates called the phase space coordinates:
This leads to having two times more unknown functions than in the Lagrangian. However, it also leads to a system of partial differential equations with only first order derivatives, which is nicer. Notably, it can be more clearly seen in phase space.
This is how you transform the Lagrangian into the Hamiltonian.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact