Circa 2020, a bowl fell on it from about 25 cm height and broke the screen. £159.99.
2023-10: unable to connect to Giffgaff. "Network unavailable". Same SIM works in other phones. So annoying. Update APN to match: www.giffgaff.com/help/articles/internet-apn-settings-guide. Went next to a tower and then got signal. So the receiver is much worse than the pixel one. Vibration appears to be broken.
Authy sync worked: 2023.
MLperf by Ciro Santilli 37 Updated 2025-07-16
mlcommons.org/en/ Their homepage is not amazingly organized, but it does the job.
Benchmark focused on deep learning. It has two parts:
Furthermore, a specific network model is specified for each benchmark in the closed category: so it goes beyond just specifying the dataset.
And there are also separate repositories for each:
E.g. on mlcommons.org/en/training-normal-21/ we can see what the the benchmarks are:
DatasetModel
ImageNetResNet
KiTS193D U-Net
OpenImagesRetinaNet
COCO datasetMask R-CNN
LibriSpeechRNN-T
WikipediaBERT
1TB ClickthroughDLRM
GoMiniGo
ONNX by Ciro Santilli 37 Updated 2025-07-16
The most important thing this project provides appears to be the .onnx file format, which represents ANN models, pre-trained or not.
Deep learning frameworks can then output such .onnx files for interchangeability and serialization.
Some examples:
The cool thing is that ONNX can then run inference in an uniform manner on a variety of devices without installing the deep learning framework used for. It's a bit like having a kind of portable executable. Neat.
Netron by Ciro Santilli 37 Updated 2025-07-16
ONNX visualizer.
Figure 1.
Netron visualization of the activatedgeek/LeNet-5 ONNX output
.
NumPy does not automatically use the GPU for it: stackoverflow.com/questions/49605231/does-numpy-automatically-detect-and-use-gpu, and PyTorch is one of the most notable compatible implementations, as it uses the same memory structure as NumPy arrays.
Sample runs on P51 to observe the GPU speedup:
$ time ./matmul.py g 10000 1000 10000 100
real    0m22.980s
user    0m22.679s
sys     0m1.129s
$ time ./matmul.py c 10000 1000 10000 100
real    1m9.924s
user    4m16.213s
sys     0m17.293s
torchvision by Ciro Santilli 37 Updated 2025-07-16
Contains several computer vision models, e.g. ResNet, all of them including pre-trained versions on some dataset, which is quite sweet.
TensorFlow quantum by Ciro Santilli 37 Updated 2025-07-16
Version of TensorFlow with a Cirq backend that can run in either quantum computers or classical computer simulations, with the goal of potentially speeding up deep learning applications on a quantum computer some day.
The P51 is a bit too heavy, and the battery could be better!
yolov5-pip by Ciro Santilli 37 Updated 2025-07-16
OK, now we're talking, two liner and you get a window showing bounding box object detection from your webcam feed!
python -m pip install -U yolov5==7.0.9
yolov5 detect --source 0
The accuracy is crap for anything but people. But still. Well done. Tested on Ubuntu 22.10, P51.
Video 1.
fcakyon/yolov5-pip webcam object detection demo by Ciro Santilli (2023)
. Source.
Fashion MNIST by Ciro Santilli 37 Updated 2025-07-16
Same style as MNIST: 28x28 grayscale images, but with clothes rather than hand written digits.
It was designed to be much harder than MNIST, and more representative of modern applications, while still retaining the low resolution of MNIST for simplicity of training.
https://web.archive.org/web/20250511105702im_/https://github.com/zalandoresearch/fashion-mnist/raw/master/doc/img/fashion-mnist-sprite.png
ImageNet subset by Ciro Santilli 37 Updated 2025-07-16
Subset generators:
Unfortunately, since ImageNet is a closed standard no one can upload such pre-made subsets, forcing everybody to download the full dataset, in ImageNet1k, which is huge!

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact