WikiAlpha by Ciro Santilli 35 Updated +Created
WikiAlpha is an alternative to Wikipedia, where the main difference is that our deletion policy is far more lenient with regard to notability requirements. Basically, WikiAlpha is a near-indiscriminate collection of information in the form of articles on any topic: you can create an article about the band you just started, your pet dog, yourself, your house - as long as your content does not fall under our speedy deletion policy, it will likely remain on the site forever!
Wikipedia analytics by Ciro Santilli 35 Updated +Created
William Shakespeare by Ciro Santilli 35 Updated +Created
William Shockley by Ciro Santilli 35 Updated +Created
This dude is the charicature of the evil scientist! It is so funny. Brilliant, ambitious and petty!
The problem with virtually all sleeping masks on the market is that they leave a lot of room near your nose for light to come in.
Ciro Santilli discovered a useful workaround for that: make the mask tighter with a swimming goggles!
Just make the goggles as loose as possible to not put pressure on your eyes, and then strap them over the sleeping mask.
If you are a back sleeper, put the googles forward as normal. If you are a stomach sleeper, put the googles on the back of your head, and the straps over the mask. This way you wont get your head squished by the goggles and the bed.
Once Ciro understood the idea, Googling "swimming googles sleeping mask" led to: mantasleep.uk/ might be a good option.
Another good Google is "sleeping mask blackout".
Wireshark by Ciro Santilli 35 Updated +Created
Amazing tool that captures packets and disassembles them. Allows you to click an interactive tree that represents Ethernet, TCP/IP and application layer like HTTP.
Start capture immediately from CLI, capture packets to/from 192.168.1.102:
sudo wireshark -f 'host 192.168.1.102' -k
Work by Freeman Dyson by Ciro Santilli 35 Updated +Created
Work (human activity) by Ciro Santilli 35 Updated +Created
World domination by Ciro Santilli 35 Updated +Created
World War II by Ciro Santilli 35 Updated +Created
World Wide Web Consortium by Ciro Santilli 35 Updated +Created
x86 custom instructions by Ciro Santilli 35 Updated +Created
Intel is known to have created customized chips for very large clients.
This is mentioned e.g. at: www.theregister.com/2021/03/23/google_to_build_server_socs/
Intel is known to do custom-ish cuts of Xeons for big customers.
Those chips are then used only in large scale server deployments of those very large clients. Google is one of them most likely, given their penchant for Google custom hardware.
TODO better sources.
x86 Paging Tutorial / Basic TLB operation by Ciro Santilli 35 Updated +Created
After a translation between linear and physical address happens, it is stored on the TLB. For example, a 4 entry TLB starts in the following state:
  valid  linear  physical
  -----  ------  --------
> 0      00000   00000
  0      00000   00000
  0      00000   00000
  0      00000   00000
The > indicates the current entry to be replaced.
And after a page linear address 00003 is translated to a physical address 00005, the TLB becomes:
  valid  linear  physical
  -----  ------  --------
  1      00003   00005
> 0      00000   00000
  0      00000   00000
  0      00000   00000
and after a second translation of 00007 to 00009 it becomes:
  valid  linear  physical
  -----  ------  --------
  1      00003   00005
  1      00007   00009
> 0      00000   00000
  0      00000   00000
Now if 00003 needs to be translated again, hardware first looks up the TLB and finds out its address with a single RAM access 00003 --> 00005.
Of course, 00000 is not on the TLB since no valid entry contains 00000 as a key.
x86 Paging Tutorial / Example: simplified single-level paging scheme by Ciro Santilli 35 Updated +Created
This is an example of how paging operates on a simplified version of a x86 architecture to implement a virtual memory space with a 20 | 12 address split (4 KiB page size).
x86 Paging Tutorial / Intel manual by Ciro Santilli 35 Updated +Created
Although it is impossible to understand without examples in mind, try to get familiar with the manuals as soon as possible.
Specially interesting is Figure 4-4 "Formats of CR3 and Paging-Structure Entries with 32-Bit Paging", which gives the key data structures.
x86 Paging Tutorial / Kernel vs process memory layout by Ciro Santilli 35 Updated +Created
The Linux Kernel reserves two zones of virtual memory:
  • one for kernel memory
  • one for programs
The exact split is configured by CONFIG_VMSPLIT_.... By default:
  • on 32-bit:
    • the bottom 3/4 is program space: 00000000 to BFFFFFFF
    • the top 1/4 is kernel memory: C0000000 to FFFFFFFF, like this:
      ------------------ FFFFFFFF
      Kernel
      ------------------ C0000000
      ------------------ BFFFFFFF
      
      
      Process
      
      
      ------------------ 00000000
  • on 64-bit: currently only 48-bits are actually used, split into two equally sized disjoint spaces. The Linux kernel just assigns:
    • the bottom part to processes 00000000 00000000 to 008FFFFF FFFFFFFF
    • the top part to the kernel: FFFF8000 00000000 to FFFFFFFF FFFFFFFF, like this:
      ------------------ FFFFFFFF
      Kernel
      ------------------ C0000000
      
      
      (not addressable)
      
      
      ------------------ BFFFFFFF
      Process
      ------------------ 00000000
Kernel memory is also paged.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact