Basically the operators are just analogous to the classical ones e.g. the classical:
becomes:
Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
Neil Fernandez by Ciro Santilli 40 Updated 2025-07-16
“Especially my father. He was doing most of it and he is a savoury, strong character. He has strong beliefs about the world and in himself, and he was helping me a lot, even when I was at university as an undergraduate.”
An only child, Arran was born in 1995 in Glasgow, where his parents were studying at the time. His father has Spanish lineage, having a great grandfather who was a sailor who moved from Spain to St Vincent in the Carribean. A son later left the islands for the UK where he married an English woman. Arran’s mother is Norwegian.
“My father was writing and my mother is an economist. They both worked from home which also made things easier,” Arran says.
A bit like what Ciro Santilli feels about himself!
One of the articles says his father has a PhD. TODO where did he work? What's his PhD on? Photo: www.topfoto.co.uk/asset/1357880/
www.thetimes.co.uk/article/the-everyday-genius-pxsq5c50kt9:
Neil, a political economist, attended state and private schools in Hampshire but was also taught for a period at home by his mother.
It’s strange because for most people maths is a real turn-off, yet maths is all about patterns and children of two or three love patterns. It just shows that schools are doing something seriously wrong.”
Proof that the probability 1 is conserved by the time evolution:
It can be derived directly from the Schrödinger equation.
Bibliography:
Ruth Lawrence by Ciro Santilli 40 Updated 2025-07-16
en.wikipedia.org/wiki/Ruth_Lawrence
When Lawrence was five, her father gave up his job so that he could educate her at home.
At Oxford, her father continued to be actively involved in her education, accompanying her to all lectures and some tutorials. Lawrence completed her bachelor's degree in two years, instead of the normal three, and graduated in 1985 at the age of 13 with a starred first and special commendation.
www.dailymail.co.uk/femail/article-3713768/Haunting-lesson-today-s-TV-child-geniuses-Ruth-Lawrence-Britain-s-famous-prodigy-tracked-father-drove-heard-troubling-tale.html
he had tried it once before - with an older daughter, Sarah, one of three children he had by a previous marriage.
That experiment ended after he separated from Sarah's increasingly concerned mother, Jutta. He soon found a woman more in tune with his radical ideas in his next spouse, Sylvia Greybourne
Figure 1.
Schematic of the Davisson-Germer experiment
. Source.
Photon energy is proportional to its frequency:
or with common weird variables:
This only makes sense if the photon exists, there is no classical analogue, because the energy of classical waves depends only on their amplitude, not frequency.
The first really good quantum mechanics theory made compatible with special relativity was the Dirac equation.
TODO: does it use full blown QED, or just something intermediate?
TODO understand better, mentioned e.g. at Subtle is the Lord by Abraham Pais (1982) page 20, and is something that Einstein worked on.
Predicted by the Dirac equation.
We've likely known since forever that photons are created: just turn on a light and see gazillion of them come out!
Photon creation is easy because photons are massless, so there is not minimum energy to create them.
The creation of other particles is much rarer however, and took longer to be discovered, one notable milestone being the discovery of the positron.
In the case of the electron, we need to start with at least enough energy for the mass of the electron positron pair. This requires a photon with wavelength in the picometer range, which is not common in the thermal radiation of daily life.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact