The degree of some algebraic structure is some parameter that describes the structure. There is no universal definition valid for all structures, it is a per structure type thing.
This is particularly useful when talking about structures with an infinite number of elements, but it is sometimes also used for finite structures.
Examples:
- the dihedral group of degree n acts on n elements, and has order 2n
- the parameter that characterizes the size of the general linear group is called the degree of that group, i.e. the dimension of the underlying matrices
The term is not very clear, as it could either mean:
- a real number function whose graph is a line, i.e.:or for higher dimensions, a hyperplane:
- a linear map. Note that the above linear functions are not linear maps unless (known as the homogeneous case), because e.g.:butFor this reason, it is better never to refer to linear maps as linear functions.
One thing that makes such functions particularly simple is that they can be fully specified by specifyin how they act on all possible combinations of input basis vectors: they are therefore specified by only a finite number of elements of .
Every linear map in finite dimension can be represented by a matrix, the points of the domain being represented as vectors.
As such, when we say "linear map", we can think of a generalization of matrix multiplication that makes sense in infinite dimensional spaces like Hilbert spaces, since calling such infinite dimensional maps "matrices" is stretching it a bit, since we would need to specify infinitely many rows and columns.
The prototypical building block of infinite dimensional linear map is the derivative. In that case, the vectors being operated upon are functions, which cannot therefore be specified by a finite number of parameters, e.g.
For example, the left side of the time-independent Schrödinger equation is a linear map. And the time-independent Schrödinger equation can be seen as a eigenvalue problem.
For the typical case of a linear form over , the form can be seen just as a row vector with n elements, the full form being specified by the value of each of the basis vectors.
In the context of tensors , we use raised indices to refer to members of the dual basis vs the underlying basis:The dual basis vectors are defined to "pick the corresponding coordinate" out of elements of V. E.g.:By expanding into the basis, we can put this more succinctly with the Kronecker delta as:
Note that in Einstein notation, the components of a dual vector have lower indices. This works well with the upper case indices of the dual vectors, allowing us to write a dual vector as:
Examples:
- a 2x2 matrix can represent a linear map from to , so which is a linear operator
- the derivative is a linear map from to , so which is also a linear operator
Given a linear operator over a space that has a inner product defined, we define the adjoint operator (the symbol is called "dagger") as the unique operator that satisfies:
Linear map of two variables.
More formally, given 3 vector spaces X, Y, Z over a single field, a bilinear map is a function from:that is linear on the first two arguments from X and Y, i.e.:Note that the definition only makes sense if all three vector spaces are over the same field, because linearity can mix up each of them.
The most important example by far is the dot product from , which is more specifically also a symmetric bilinear form.
Analogous to a linear form, a bilinear form is a Bilinear map where the image is the underlying field of the vector space, e.g. .
Some definitions require both of the input spaces to be the same, e.g. , but it doesn't make much different in general.
The most important example of a bilinear form is the dot product. It is only defined if both the input spaces are the same.
As usual, it is useful to think about how a bilinear form looks like in terms of vectors and matrices.
Unlike a linear form, which was a vector, because it has two inputs, the bilinear form is represented by a matrix which encodes the value for each possible pair of basis vectors.
Effect of a change of basis on the matrix of a bilinear form by
Ciro Santilli 37 Updated 2025-07-16
If is the change of basis matrix, then the matrix representation of a bilinear form that looked like:then the matrix in the new basis is:Sylvester's law of inertia then tells us that the number of positive, negative and 0 eigenvalues of both of those matrices is the same.
Proof: the value of a given bilinear form cannot change due to a change of basis, since the bilinear form is just a function, and does not depend on the choice of basis. The only thing that change is the matrix representation of the form. Therefore, we must have:and in the new basis:and so since:
See form.
Analogous to a linear form, a multilinear form is a Multilinear map where the image is the underlying field of the vector space, e.g. .
Subcase of symmetric multilinear map:
The most important example is the dot product, which is also a positive definite symmetric bilinear form.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





