Given the view of the Standard Model where the electron and quarks are just completely separate matter fields, there is at first sight no clear theoretical requirement for that.
As mentioned e.g. at QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) chapter 1.6 "Hole theory", Dirac initially wanted to think of the holes in his hole theory as the protons, as a way to not have to postulate a new particle, the positron, and as a way to "explain" the proton in similar terms. Others however soon proposed arguments why the positron would need to have the same mass, and this idea had to be discarded.
Oil drop experiment by Ciro Santilli 37 Updated 2025-07-16
Clear experiment diagram which explains that the droplet mass determined with Stoke's law:
Video 1.
Quantum Mechanics 4a - Atoms I by ViaScience (2013)
Source.
American Scientific, LLC sells a ready made educational kit for this: www.youtube.com/watch?v=EV3BtoMGA9c
Here's some actual footage of a droplet on a well described more one-off setup:
Video 2.
Millikan's Experiment, Part 2: The Experiment by Phil Furneaux (2017)
Source. From Lancaster University
This American video likely from the 60's shows it with amazing contrast: www.youtube.com/watch?v=_UDT2FcyeA4
Baryon by Ciro Santilli 37 Updated 2025-07-16
The most important examples by far are the proton and the neutron.
"Barys" means "heavy" in Greek, because protons and neutrons was what made most of the mass of known ordinary matter, as opposed notably to electrons.
Baryons can be contrasted with:
Meson by Ciro Santilli 37 Updated 2025-07-16
composite particle made up of an even number of elementary particles, most commonly one particle and one anti-particle.
This can be contrasted with mesons, which have an odd number of elementary particles, as mentioned at baryon vs meson vs lepton.
Pion by Ciro Santilli 37 Updated 2025-07-16
Conceptually the simplest mesons. All of them have neutral color charge:
  • charged: down + anti-up or up + anti-down, therefore with net electrical charge electron charge
  • neutral: down + anti-down or up + anti-up, therefore with net electrical charge 0
Video 1.
Strangeness Minus Three (BBC Horizon 1964)
Source. Basically shows Richard Feynman 15 minutes on a blackboard explaining the experimental basis of the eightfold way really well, while at the same time hyperactively moving all over. The word symmetry gets tossed a few times.
The growing number of parameters of the Standard Model is one big source of worry for early 21st century physics, much like the growing number of particles was a worry in the beginning of the 20th (but that one was solved by 2020).
Physicists love to talk about that stuff, but no one ever has the guts to explain it into enough detail to show its beauty!!!
Perhaps the wisest thing is to just focus entirely on the part to start with, which is the quantum electrodynamics one, which is the simplest and most useful and historically first one to come around.
Perhaps the best explanation is that if you assume those internal symmetries, then you can systematically make "obvious" educated guesses at the interacting part of the Standard Model Lagrangian, which is the fundamental part of the Standard Model. See e.g.:
One bit underlying reason is: Noether's theorem.
Notably, axelmaas.blogspot.com/2010/08/global-and-local-symmetries.html gives a good overview:
A local symmetry transformation is much more complicated to visualize. Take a rectangular grid of the billiard balls from the last post, say ten times ten. Each ball is spherical symmetric, and thus invariant under a rotation. The system now has a global and a local symmetry. A global symmetry transformation would rotate each ball by the same amount in the same direction, leaving the system unchanged. A local symmetry transformation would rotate each ball about a different amount and around a different axis, still leaving the system to the eye unchanged. The system has also an additional global symmetry. Moving the whole grid to the left or to the right leaves the grid unchanged. However, no such local symmetry exists: Moving only one ball will destroy the grid's structure.
Such global and local symmetries play an important role in physics. The global symmetries are found to be associated with properties of particles, e. g., whether they are matter or antimatter, whether they carry electric charge, and so on. Local symmetries are found to be associated with forces. In fact, all the fundamental forces of nature are associated with very special local symmetries. For example, the weak force is actually associated in a very intricate way with local rotations of a four-dimensional sphere. The reason is that, invisible to the eye, everything charged under the weak force can be characterized by a arrow pointing from the center to the surface of such a four-dimensional sphere. This arrow can be rotated in a certain way and at every individual point, without changing anything which can be measured. It is thus a local symmetry. This will become more clearer over time, as at the moment of first encounter this appears to be very strange indeed.
so it seems that that's why they are so key: local symmetries map to the forces themselves!!!
axelmaas.blogspot.com/2010/09/symmetries-of-standard-model.html then goes over all symmetries of the Standard Model uber quickly, including the global ones.
Quantum mechanics by Ciro Santilli 37 Updated 2025-07-16
Quantum mechanics is quite a broad term. Perhaps it is best to start approaching it from the division into:
Mathematics: there are a few models of increasing precision which could all be called "quantum mechanics":
Ciro Santilli feels that the largest technological revolutions since the 1950's have been quantum related, and will continue to be for a while, from deeper understanding of chemistry and materials to quantum computing, understanding and controlling quantum systems is where the most interesting frontier of technology lies.
Spectral line by Ciro Santilli 37 Updated 2025-07-16
A single line in the emission spectrum.
So precise, so discrete, which makes no sense in classical mechanics!
Has been the leading motivation of the development of quantum mechanics, all the way from the:

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact