Quantum Intermediate Representation by Ciro Santilli 35 Updated +Created
Used e.g. by Oxford Quantum Circuits, www.linkedin.com/in/john-dumbell-627454121/ mentions:
Using LLVM to consume QIR and run optimization, scheduling and then outputting hardware-specific instructions.
Presumably the point of it is to allow simulation in classical computers?
Taylor series by Ciro Santilli 35 Updated +Created
University of California, Santa Barbara by Ciro Santilli 35 Updated +Created
Balmer series by Ciro Santilli 35 Updated +Created
Quantum error correction by Ciro Santilli 35 Updated +Created
Technique that uses multiple non-ideal qubits (physical qubits) to simulate/produce one perfect qubit (logical).
One is philosophically reminded of classical error correction codes, where we also have multiple input bits per actual information bit.
TODO understand in detail. This appears to be a fundamental technique since all physical systems we can manufacture are imperfect.
Part of the fundamental interest of this technique is due to the quantum threshold theorem.
For example, when PsiQuantum raised 215M in 2020, they announced that they intended to reach 1 million physical qubits, which would achieve between 100 and 300 logical qubits.
Quantum threshold theorem by Ciro Santilli 35 Updated +Created
This theorem roughly states that states that for every quantum algorithm, once we reach a certain level of physical error rate small enough (where small enough is algorithm dependant), then we can perfectly error correct.
This algorithm provides the conceptual division between noisy intermediate-scale quantum era and post-NISQ.
NISQ algorithm by Ciro Santilli 35 Updated +Created
A quantum algorithm that is thought to be more likely to be useful in the NISQ era of quantum computing.
Quantum approximate optimization algorithm by Ciro Santilli 35 Updated +Created
TODO clear example of the computational problem that it solves.
High level quantum synthesis by Ciro Santilli 35 Updated +Created
This is a term "invented" by Ciro Santilli to refer to quantum compilers that are able to convert non-specifically-quantum (functional, since there is no state in quantum software) programs into quantum circuit.
The term is made by adding "quantum" to the more "classical" concept of "high-level synthesis", which refers to software that converts an imperative program into register transfer level hardware, typicially for FPGA applications.
QuTech Academy by Ciro Santilli 35 Updated +Created
One of their learning sites: www.qutube.nl/
The educational/outreach branch of QuTech.
State initialization (quantum computing) by Ciro Santilli 35 Updated +Created
Sergey Brin's women by Ciro Santilli 35 Updated +Created
Measurement-based quantum computer by Ciro Santilli 35 Updated +Created
TODO confirm: apparently in the paradigm you can choose to measure only certain output qubits.
This makes things irreversible (TODO what does reversibility mean in this random context?), as opposed to Circuit-based quantum computer where you measure all output qubits at once.
TODO what is the advantage?
Tensor product in quantum computing by Ciro Santilli 35 Updated +Created
We don't need to understand a super generalized version of tensor products to know what they mean in basic quantum computing!
Intuitively, taking a tensor product of two qubits simply means putting them together on the same quantum system/computer.
When we write the bra-ket notation: that is the same as .
The tensor product is called a "product" because it distributes over addition.
E.g. consider:
Intuitively, in this operation we just put a Hadamard gate qubit together with a second pure qubit.
And the outcome still has the second qubit as always 0, because we haven't made them interact.
The quantum state is called a separable state, because it can be written as a single product of two different qubits. We have simply brought two qubits together, without making them interact.
If we then add a CNOT gate to make a Bell state:
we can now see that the Bell state is non-separable: we've made the two qubits interact, and there is no way to write this state with a single tensor product. The qubits are fundamentally entangled.
Model of the solar system by Ciro Santilli 35 Updated +Created
One key insight, is that the matrix of a non-trivial quantum circuit is going to be huge, and won't fit into any amount classical memory that can be present in this universe.
This is because the matrix is exponential in the number qubits, and is more than the number of atoms in the universe!
Therefore, off the bat we know that we cannot possibly describe those matrices in an explicit form, but rather must use some kind of shorthand.
But it gets worse.
Even if we had enough memory, the act of explicitly computing the matrix is not generally possible.
This is because knowing the matrix, basically means knowing the probability result for all possible outputs for each of the possible inputs.
But if we had those probabilities, our algorithmic problem would already be solved in the first place! We would "just" go over each of those output probabilities (OK, there are of those, which is also an insurmountable problem in itself), and the largest probability would be the answer.
So if we could calculate those probabilities on a classical machine, we would also be able to simulate the quantum computer on the classical machine, and quantum computing would not be able to give exponential speedups, which we know it does.
To see this, consider that for a given input, say 000 on a 3 qubit machine, the corresponding 8-sized quantum state looks like:
000 -> 1000 0000 == (1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
and therefore when you multiply it by the unitary matrix of the quantum circuit, what you get is the first column of the unitary matrix of the quantum circuit. And 001, gives the second column and so on.
As a result, to prove that a quantum algorithm is correct, we need to be a bit smarter than "just calculate the full matrix".
Which is why you should now go and read: Section "Quantum algorithm".
This type of thinking links back to how physical experiments relate to quantum computing: a quantum computer realizes a physical experiment to which we cannot calculate the probabilities of outcomes without exponential time.
So for example in the case of a photonic quantum computer, you are not able to calculate from theory the probability that photons will show up on certain wires or not.
Hadamard gate by Ciro Santilli 35 Updated +Created
The Hadamard gate takes or (quantum states with probability 1.0 of measuring either 0 or 1), and produces states that have equal probability of 0 or 1.
Phase shift gate by Ciro Santilli 35 Updated +Created
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact