Chemiosmosis Updated 2025-07-16
Ciro Santilli's biography Updated 2025-07-16
Maybe Ciro Santilli should do something useful and remarkable so that someone might actually want to read his biography in the first place. But hey, procrastination.
Ciro Santilli was born in Brazil in the small/medium city of Rio Claro, São Paulo (~200k people in 2020) in the State of São Paulo in 1989 AD.
The family then moved to Jundiaí in 1995, and then finally to Santos, São Paulo, Brazil in 1997.
In 2010, as mentioned at Section "Ciro Santilli's formal education", Ciro as admitted in a double degree program at the École Polytechnique, France, where he stayed until 2013. Going to France was a mind blowing, life changing event.
Steven Pruitt Updated 2025-07-16
Video 1.
Meet the man behind a third of what's on Wikipedia
. Source.
Wikipedia edit request Updated 2025-07-16
So, it turns out that Wikipedia does have a (ultra obscure as usual) mechanism for pull requests. You learn a new one every day.
Chess engine Updated 2025-07-16
x86 Paging Tutorial / Copy-on-write Updated 2025-07-16
Besides a missing page, a very common source of page faults is copy-on-write (COW).
Page tables have extra flags that allow the OS to mark a page a read-only.
Those page faults only happen when a process tries to write to the page, and not read from it.
When Linux forks a process:
  • instead of copying all the pages, which is unnecessarily costly, it makes the page tables of the two process point to the same physical address.
  • it marks those linear addresses as read-only
  • whenever one of the processes tries to write to a page, the makes a copy of the physical memory, and updates the pages of the two process to point to the two different physical addresses
SQLite isolation levels Updated 2025-07-16
The default isolation level for SQLite is SERIALIZABLE
It does not appear possible to achieve the other two levels besides SERIALIZABLE and READ UNCOMMITED
Deletionism on Wikipedia Updated 2025-07-16
Some examples by Ciro Santilli follow.
Of the tutorial-subjectivity type:
Notability constraints, which are are way too strict:
There are even a Wikis that were created to remove notability constraints: Wiki without notability requirements.
For these reasons reason why Ciro basically only contributes images to Wikipedia: because they are either all in or all out, and you can determine which one of them it is. And this allows images to be more attributable, so people can actually see that it was Ciro that created a given amazing image, thus overcoming Wikipedia's lack of reputation system a little bit as well.
Wikipedia is perfect for things like biographies, geography, or history, which have a much more defined and subjective expository order. But when it comes to "tutorials of how to actually do stuff", which is what mathematics and physics are basically about, Wikipedia has a very hard time to go beyond dry definitions which are only useful for people who already half know the stuff. But to learn from zero, newbies need tutorials with intuition and examples.
Bibliography:
Group axiom Updated 2025-07-16
When the process changes, cr3 change to point to the page table of the new current process.
This creates a problem: the TLB is now filled with a bunch of cached entries for the old process.
A simple and naive solution would be to completely invalidate the TLB whenever the cr3 changes.
However, this is would not be very efficient, because it often happens that we switch back to process 1 before process 2 has completely used up the entire TLB cache entries.
Basically, the OS assigns a different ASID for each process, and then TLB entries are automatically also tagged with that ASID. This way when the process makes an access, the TLB can determine if a hit is actually for the current process, or if it is an old address coincidence with another process.
The x86 also offers the invlpg instruction which explicitly invalidates a single TLB entry. Other architectures offer even more instructions to invalidated TLB entries, such as invalidating all entries on a given range.
The algorithmically minded will have noticed that paging requires associative array (like Java Map of Python dict()) abstract data structure where:
  • the keys are linear pages addresses, thus of integer type
  • the values are physical page addresses, also of integer type
The single level paging scheme uses a simple array implementation of the associative array:
  • the keys are the array index
  • this implementation is very fast in time
  • but it is too inefficient in memory
and in C pseudo-code it looks like this:
linear_address[0]      = physical_address_0
linear_address[1]      = physical_address_1
linear_address[2]      = physical_address_2
...
linear_address[2^20-1] = physical_address_N
But there another simple associative array implementation that overcomes the memory problem: an (unbalanced) k-ary tree.
A K-ary tree, is just like a binary tree, but with K children instead of 2.
Using a K-ary tree instead of an array implementation has the following trade-offs:
  • it uses way less memory
  • it is slower since we have to de-reference extra pointers
In C-pseudo code, a 2-level K-ary tree with K = 2^10 looks like this:
level0[0] = &level1_0[0]
    level1_0[0]      = physical_address_0_0
    level1_0[1]      = physical_address_0_1
    ...
    level1_0[2^10-1] = physical_address_0_N
level0[1] = &level1_1[0]
    level1_1[0]      = physical_address_1_0
    level1_1[1]      = physical_address_1_1
    ...
    level1_1[2^10-1] = physical_address_1_N
...
level0[N] = &level1_N[0]
    level1_N[0]      = physical_address_N_0
    level1_N[1]      = physical_address_N_1
    ...
    level1_N[2^10-1] = physical_address_N_N
and we have the following arrays:
  • one directory, which has 2^10 elements. Each element contains a pointer to a page table array.
  • up to 2^10 pagetable arrays. Each one has 2^10 4 byte page entries.
and it still contains 2^10 * 2^10 = 2^20 possible keys.
K-ary trees can save up a lot of space, because if we only have one key, then we only need the following arrays:
  • one directory with 2^10 entries
  • one pagetable at directory[0] with 2^10 entries
  • all other directory[i] are marked as invalid, don't point to anything, and we don't allocate pagetable for them at all
There are explicit examples of this. We can have ever thinner disturbances to convergence that keep getting less and less area, but never cease to move around.
If it does converge pointwise to something, then it must match of course.
Nazi Germany Updated 2025-07-16
The Linux Kernel reserves two zones of virtual memory:
  • one for kernel memory
  • one for programs
The exact split is configured by CONFIG_VMSPLIT_.... By default:
  • on 32-bit:
    • the bottom 3/4 is program space: 00000000 to BFFFFFFF
    • the top 1/4 is kernel memory: C0000000 to FFFFFFFF, like this:
      ------------------ FFFFFFFF
      Kernel
      ------------------ C0000000
      ------------------ BFFFFFFF
      
      
      Process
      
      
      ------------------ 00000000
  • on 64-bit: currently only 48-bits are actually used, split into two equally sized disjoint spaces. The Linux kernel just assigns:
    • the bottom part to processes 00000000 00000000 to 008FFFFF FFFFFFFF
    • the top part to the kernel: FFFF8000 00000000 to FFFFFFFF FFFFFFFF, like this:
      ------------------ FFFFFFFF
      Kernel
      ------------------ C0000000
      
      
      (not addressable)
      
      
      ------------------ BFFFFFFF
      Process
      ------------------ 00000000
Kernel memory is also paged.
Paging is done by the Memory Management Unit (MMU) part of the CPU.
Like many others (e.g. x87 co-processor, APIC), this used to be by separate chip on early days.
It was later integrated into the CPU, but the term MMU still used.

Unlisted articles are being shown, click here to show only listed articles.