Used e.g. in the Sycamore processor.
The most basic type of transmon is in Ciro's ASCII art circuit diagram notation, an LC circuit e.g. as mentioned at youtu.be/cb_f9KpYipk?t=180 from Video "The transmon qubit by Leo Di Carlo (2018)":
+----------+
| Island 1 |
+----------+
| |
X C
| |
+----------+
| Island 2 |
+----------+
youtu.be/eZJjQGu85Ps?t=2443 from Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)" describes a (possibly simplified) physical model of it, as two superconducting metal islands linked up by a Josephson junction marked as The circuit is then analogous to a LC circuit, with the islands being the capacitor. The Josephson junction functions as a non-linear inductor.
X
in the diagram as per-Ciro's ASCII art circuit diagram notation:+-------+ +-------+
| | | |
| Q_1() |---X---| Q_2() |
| | | |
+-------+ +-------+
Others define it with a SQUID device instead: youtu.be/cb_f9KpYipk?t=328 from Video "The transmon qubit by Leo Di Carlo (2018)". He mentions that this allows tuning the inductive element without creating a new device.
The superconducting transmon qubit as a microwave resonator by Daniel Sank (2021)
Source. SQL REPEATABLE READ isolation level by
Ciro Santilli 35 Updated 2025-04-05 +Created 1970-01-01
Vs SQL SERIALIZABLE isolation level on PostgreSQL: dba.stackexchange.com/questions/284744/postgres-repeatable-read-vs-serializable
nodejs/sequelize/raw/parallel_create_delete_empty_tag.js is an example which experimentally seems to be solved by
REAPEATABLE READ
, although we are not sure that this is truly the case and why. What is clear is that that example is not solved by the SQL READ COMMITTED isolation level.In PostgreSQL, this is the first isolation level which can lead to postgreSQL serialization failures, this does not happen to SQL READ COMMITTED isolation level in that DBMS. You then have to retry the transaction.
Fizeau's determination of the speed of light with a rotating cogwheel by
Ciro Santilli 35 Updated 2025-04-05 +Created 1970-01-01
An example where
SELECT FOR UPDATE
is a good solution to an use case can be seen at: nodejs/sequelize/raw/parallel_select_and_update.js.SELECT FOR UPDATE
vs/together with the SQL transaction isolation level is commented at: stackoverflow.com/questions/10935850/when-to-use-select-for-update.Micro means "small wavelength compared to radio waves", not micron-sized.
Microwave production and detection is incredibly important in many modern applications:
- telecommunications, e.g. being used in
- Wi-Fi
- satellite communicationsyoutu.be/EYovBJR6l5U?list=PL-_93BVApb58SXL-BCv4rVHL-8GuC2WGb&t=27 from CuriousMarc comments on some piece of Apollo equipment they were restoring/reversing:Ah, Ciro Santilli really wishes he knew what that meant more precisely. Sounds so cool!
These are the boxes that brought you voice, data and live TV from the moon, and should be early masterpieces of microwave electronics, the blackest of black arts in analog electronics.
- 4G and other cellular network standards
- radar. As an example, 1965 Nobel Prize in Physics laureate Julian Schwinger did some notable work in the area in World War II, while most other physicists went to the Manhattan Project instead.This is well highlighted in QED and the men who made itby Silvan Schweber (1994). Designing the cavity wasn't easy. One of the key initial experiments of quantum electrodynamics, the Lamb-Retherford experiment from 1947, fundamental for modern physics, was a direct consequence of post-radar research by physicists who started to apply wartime developments to their scientific search.Wikipedia also mentions en.wikipedia.org/w/index.php?title=Microwave&oldid=1093188913#Radar_2:
The first modern silicon and germanium diodes were developed as microwave detectors in the 1930s, and the principles of semiconductor physics learned during their development led to semiconductor electronics after the war.
- microwave is the natural frequency of several important Atomic, Molecular and Optical Physics phenomena, and has been used extensively in quantum computing applications, including completely different types of quantum computer type:Likely part of the appeal of microwaves is that they are non-ionizing, so you don't destroy stuff. But at the same time, they are much more compatible with atomic scale energies than radio waves, which have way way too little energy.
- trapped ion quantum computer; Video "Trapping Ions for Quantum Computing by Diana Craik (2019)"
- superconducting quantum computer; e.g. this Junior Microwave Design Engineer job accouncement from Alice&Bob: archive.ph/wip/4wGPJ
In 2015, they got a 50 million investment from Grupo Arcano, led by Alberto Chang-Rajii, who is a really shady character who fled from justice for 2 years:
Merged into Quantinuum later on in 2021.
In order to create a test user with password instead of peer authentication, let's create test user:
createuser -P user0
createdb user0
-P
makes it prompt for the users password.Alternatively, to create the password non-interactively stackoverflow.com/questions/42419559/postgres-createuser-with-password-from-terminal:Can't find a way using the
psql -c "create role NewRole with login password 'secret'"
createuser
helper.We can then login with that password with:which asks for the password we've just set, because the
psql -U user0 -h localhost
-h
option turns off peer authentication, and turns off password authentication.The password can be given non-interactively as shown at stackoverflow.com/questions/6405127/how-do-i-specify-a-password-to-psql-non-interactively with the
PGPASSWORD
environment variable:PGPASSWORD=a psql -U user0 -h localhost
Now let's create a test database which
user0
can access with an existing superuser account:createdb user0db0
psql -c 'GRANT ALL PRIVILEGES ON DATABASE user0db0 TO user0'
We can check this permission with:which now contains:The permission letters are explained at:
psql -c '\l'
List of databases
Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+-------------+-------------+-----------------------
user0db0 | ciro | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =Tc/ciro +
| | | | | ciro=CTc/ciro +
| | | | | user0=CTc/ciro
user0
can now do the usual table operations on that table:PGPASSWORD=a psql -U user0 -h localhost user0db0 -c 'CREATE TABLE table0 (int0 INT, char0 CHAR(16));'
PGPASSWORD=a psql -U user0 -h localhost user0db0 -c "INSERT INTO table0 (int0, char0) VALUES (2, 'two'), (3, 'three'), (5, 'five'), (7, 'seven');"
PGPASSWORD=a psql -U user0 -h localhost user0db0 -c 'SELECT * FROM table0;'
A device that modifies photon polarization.
As mentioned at Video "Quantum Mechanics 9b - Photon Spin and Schrodinger's Cat II by ViaScience (2013)", it can be modelled as a bra.
Source code: github.com/sequelize/sequelize
Some usage examples under: Section "Sequelize example".
As of 2021, this library is extremely painful to use. It does feel semi-mature, but there are just too much horrible things going on;
- the documentation is a bit messy and misses a lot of stuff. The examples are often too short, and it is hard to understand what specific options they are talking about do because they lack clear input/expected output pairs. Examples:
- the implementation has several inelegant/unintuitive annoyances/requirements of code repetition that drive you mad.The association API feels notably bad, it took a few days for Ciro Santilli to learn to do what he considers "basic" association operations, knowledge which he dumped to: stackoverflow.com/questions/22958683/how-to-implement-many-to-many-association-in-sequelize/67973948#67973948See also: how to decide if an ORM is good?.
- bugs are piling up. It appears that many key devs left, and current maintainers are just not being able to keep up.And they have setup a stupid bot that closes every thread automatically after a few days, what's the point... valid bugs are being closed due to this, and it is impossible to distinguish what is solved and what isn't since everything gets closed.
Some glaring issues are listed at the horrors of Sequelize.
Present in chormosome 4.
Good video showing what appears to be the adenine nucleotide translocator. although they don't use that name, instead saying ADP/ATP carrier.
The video also briefly depicts the ATP synthase and the mitochondrial phosphate carrier protein.
essential metabolism for a minimal cell (2019) mentions:
- NCBI: www.ncbi.nlm.nih.gov/nuccore/CP014940.1
- 473 genes
phenomena.nationalgeographic.com/2016/04/21/we-built-the-worlds-simplest-cell-but-dunno-how-it-works/ likely talks about it.
Stuff built on top:
This is a good read: quantumai.google/hardware/datasheet/weber.pdf May 14, 2021. Their topology is so weird, not just a rectangle, one wonders why! You get different error rates in different qubits, it's mad.
Google Sycamore Weber quantum computer connectivity graph
. Weber is a specific processor of the Sycamore family. From this we see it clearly that qubits are connected to at most 4 other qubits, and that the full topology is not just a simple rectangle. There are unlisted articles, also show them or only show them.