Alpha decay Updated +Created
Most of the helium in the Earth's atmosphere comes from alpha decay, since helium is lighter than air and naturally escapes out out of the atmosphere.
Wiki mentions that alpha decay is well modelled as a quantum tunnelling event, see also Geiger-Nuttall law.
As a result of that law, alpha particles have relatively little energy variation around 5 MeV or a speed of about 5% of the speed of light for any element, because the energy is inversely exponentially proportional to half-life. This is because:
  • if the energy is much larger, decay is very fast and we don't have time to study the isotope
  • if the energy is much smaller, decay is very rare and we don't have enough events to observe at all
Video 1. Source.
Caesium-137 Updated +Created
Highly radioactive isotope of caesium with half-life of 30.17 y. Produced from the nuclear fission of uranium, TODO exact reaction, not found in nature.
The fucked thing about this byproduct is that it is in the same chemical family as sodium, and therefore forms a salt that looks like regular table salt, and dissolves in water and therefore easily enters your body and sticks to things.
Another problem is that its half-life is long enough that it doesn't lose radioactivity very quickly compared to the life of a human person, although it is short enough to make it highly toxic, making it a terrible pollutant when released.
This is why for example in the goiânia accident a girl ended up ingesting Caesium-137 after eating an egg after touching the Caesium with her hands.
Source code overview Updated +Created
The key model database is located in the source code at reconstruction/ecoli/flat.
Let's try to understand some interesting looking, with a special focus on our understanding of the tiny E. Coli K-12 MG1655 operon thrLABC part of the metabolism, which we have well understood at Section "E. Coli K-12 MG1655 operon thrLABC".
We'll realize that a lot of data and IDs come from/match BioCyc quite closely.
  • reconstruction/ecoli/flat/compartments.tsv contains cellular compartment information:
    "abbrev" "id"
    "n" "CCO-BAC-NUCLEOID"
    "j" "CCO-CELL-PROJECTION"
    "w" "CCO-CW-BAC-NEG"
    "c" "CCO-CYTOSOL"
    "e" "CCO-EXTRACELLULAR"
    "m" "CCO-MEMBRANE"
    "o" "CCO-OUTER-MEM"
    "p" "CCO-PERI-BAC"
    "l" "CCO-PILUS"
    "i" "CCO-PM-BAC-NEG"
  • reconstruction/ecoli/flat/promoters.tsv contains promoter information. Simple file, sample lines:
    "position" "direction" "id" "name"
    148 "+" "PM00249" "thrLp"
    corresponds to E. Coli K-12 MG1655 promoter thrLp, which starts as position 148.
  • reconstruction/ecoli/flat/proteins.tsv contains protein information. Sample line corresponding to e. Coli K-12 MG1655 gene thrA:
    "aaCount" "name" "seq" "comments" "codingRnaSeq" "mw" "location" "rnaId" "id" "geneId"
    [91, 46, 38, 44, 12, 53, 30, 63, 14, 46, 89, 34, 23, 30, 29, 51, 34, 4, 20, 0, 69] "ThrA" "MRVL..." "Location information from Ecocyc dump." "AUGCGAGUGUUG..." [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 89103.51099999998, 0.0, 0.0, 0.0, 0.0] ["c"] "EG10998_RNA" "ASPKINIHOMOSERDEHYDROGI-MONOMER" "EG10998"
    so we understand that:
    • aaCount: amino acid count, how many of each of the 20 proteinogenic amino acid are there
    • seq: full sequence, using the single letter abbreviation of the proteinogenic amino acids
    • mw; molecular weight? The 11 components appear to be given at reconstruction/ecoli/flat/scripts/unifyBulkFiles.py:
      molecular_weight_keys = [
        '23srRNA',
        '16srRNA',
        '5srRNA',
        'tRNA',
        'mRNA',
        'miscRNA',
        'protein',
        'metabolite',
        'water',
        'DNA',
        'RNA' # nonspecific RNA
        ]
      so they simply classify the weight? Presumably this exists for complexes that have multiple classes?
    • location: cell compartment where the protein is present, c defined at reconstruction/ecoli/flat/compartments.tsv as cytoplasm, as expected for something that will make an amino acid
  • reconstruction/ecoli/flat/rnas.tsv: TODO vs transcriptionUnits.tsv. Sample lines:
    "halfLife" "name" "seq" "type" "modifiedForms" "monomerId" "comments" "mw" "location" "ntCount" "id" "geneId" "microarray expression"
    174.0 "ThrA [RNA]" "AUGCGAGUGUUG..." "mRNA" [] "ASPKINIHOMOSERDEHYDROGI-MONOMER" "" [0.0, 0.0, 0.0, 0.0, 790935.00399999996, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ["c"] [553, 615, 692, 603] "EG10998_RNA" "EG10998" 0.0005264904
    • halfLife: half-life
    • mw: molecular weight, same as in reconstruction/ecoli/flat/proteins.tsv. This molecule only have weight in the mRNA class, as expected, as it just codes for a protein
    • location: same as in reconstruction/ecoli/flat/proteins.tsv
    • ntCount: nucleotide count for each of the ATGC
    • microarray expression: presumably refers to DNA microarray for gene expression profiling, but what measure exactly?
  • reconstruction/ecoli/flat/sequence.fasta: FASTA DNA sequence, first two lines:
    >E. coli K-12 MG1655 U00096.2 (1 to 4639675 = 4639675 bp)
    AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTG
  • reconstruction/ecoli/flat/transcriptionUnits.tsv: transcription units. We can observe for example the two different transcription units of the E. Coli K-12 MG1655 operon thrLABC in the lines:
    "expression_rate" "direction" "right" "terminator_id"  "name"    "promoter_id" "degradation_rate" "id"       "gene_id"                                   "left"
    0.0               "f"         310     ["TERM0-1059"]   "thrL"    "PM00249"     0.198905992329492 "TU0-42486" ["EG11277"]                                  148
    657.057317358791  "f"         5022    ["TERM_WC-2174"] "thrLABC" "PM00249"     0.231049060186648 "TU00178"   ["EG10998", "EG10999", "EG11000", "EG11277"] 148
  • reconstruction/ecoli/flat/genes.tsv
    "length" "name"                      "seq"             "rnaId"      "coordinate" "direction" "symbol" "type" "id"      "monomerId"
    66       "thr operon leader peptide" "ATGAAACGCATT..." "EG11277_RNA" 189         "+"         "thrL"   "mRNA" "EG11277" "EG11277-MONOMER"
    2463     "ThrA"                      "ATGCGAGTGTTG"    "EG10998_RNA" 336         "+"         "thrA"   "mRNA" "EG10998" "ASPKINIHOMOSERDEHYDROGI-MONOMER"
  • reconstruction/ecoli/flat/metabolites.tsv contains metabolite information. Sample lines:
    "id"                       "mw7.2" "location"
    "HOMO-SER"                 119.12  ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
    "L-ASPARTATE-SEMIALDEHYDE" 117.104 ["n", "j", "w", "c", "e", "m", "o", "p", "l", "i"]
    In the case of the enzyme thrA, one of the two reactions it catalyzes is "L-aspartate 4-semialdehyde" into "Homoserine".
    Starting from the enzyme page: biocyc.org/gene?orgid=ECOLI&id=EG10998 we reach the reaction page: biocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=HOMOSERDEHYDROG-RXN which has reaction ID HOMOSERDEHYDROG-RXN, and that page which clarifies the IDs:
    so these are the compounds that we care about.
  • reconstruction/ecoli/flat/reactions.tsv contains chemical reaction information. Sample lines:
    "reaction id" "stoichiometry" "is reversible" "catalyzed by"
    
    "HOMOSERDEHYDROG-RXN-HOMO-SER/NAD//L-ASPARTATE-SEMIALDEHYDE/NADH/PROTON.51."
      {"NADH[c]": -1, "PROTON[c]": -1, "HOMO-SER[c]": 1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "NAD[c]": 1}
      false
      ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
    
    "HOMOSERDEHYDROG-RXN-HOMO-SER/NADP//L-ASPARTATE-SEMIALDEHYDE/NADPH/PROTON.53."
      {"NADPH[c]": -1, "NADP[c]": 1, "PROTON[c]": -1, "L-ASPARTATE-SEMIALDEHYDE[c]": -1, "HOMO-SER[c]": 1
      false
      ["ASPKINIIHOMOSERDEHYDROGII-CPLX", "ASPKINIHOMOSERDEHYDROGI-CPLX"]
    • catalized by: here we see ASPKINIHOMOSERDEHYDROGI-CPLX, which we can guess is a protein complex made out of ASPKINIHOMOSERDEHYDROGI-MONOMER, which is the ID for the thrA we care about! This is confirmed in complexationReactions.tsv.
  • reconstruction/ecoli/flat/complexationReactions.tsv contains information about chemical reactions that produce protein complexes:
    "process" "stoichiometry" "id" "dir"
    "complexation"
      [
        {
          "molecule": "ASPKINIHOMOSERDEHYDROGI-CPLX",
          "coeff": 1,
          "type": "proteincomplex",
          "location": "c",
          "form": "mature"
        },
        {
          "molecule": "ASPKINIHOMOSERDEHYDROGI-MONOMER",
          "coeff": -4,
          "type": "proteinmonomer",
          "location": "c",
          "form": "mature"
        }
      ]
    "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN"
    1
    The coeff is how many monomers need to get together for form the final complex. This can be seen from the Summary section of ecocyc.org/gene?orgid=ECOLI&id=ASPKINIHOMOSERDEHYDROGI-MONOMER:
    Aspartate kinase I / homoserine dehydrogenase I comprises a dimer of ThrA dimers. Although the dimeric form is catalytically active, the binding equilibrium dramatically favors the tetrameric form. The aspartate kinase and homoserine dehydrogenase activities of each ThrA monomer are catalyzed by independent domains connected by a linker region.
    Fantastic literature summary! Can't find that in database form there however.
  • reconstruction/ecoli/flat/proteinComplexes.tsv contains protein complex information:
    "name" "comments" "mw" "location" "reactionId" "id"
    "aspartate kinase / homoserine dehydrogenase"
    ""
    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 356414.04399999994, 0.0, 0.0, 0.0, 0.0]
    ["c"]
    "ASPKINIHOMOSERDEHYDROGI-CPLX_RXN"
    "ASPKINIHOMOSERDEHYDROGI-CPLX"
  • reconstruction/ecoli/flat/protein_half_lives.tsv contains the half-life of proteins. Very few proteins are listed however for some reason.
  • reconstruction/ecoli/flat/tfIds.csv: transcription factors information:
    "TF"   "geneId"  "oneComponentId"  "twoComponentId" "nonMetaboliteBindingId" "activeId" "notes"
    "arcA" "EG10061" "PHOSPHO-ARCA"    "PHOSPHO-ARCA"
    "fnr"  "EG10325" "FNR-4FE-4S-CPLX" "FNR-4FE-4S-CPLX"
    "dksA" "EG10230"
Half-life Updated +Created
The half-life of radioactive decay, which as discovered a few years before quantum mechanics was discovered and matured, was a major mystery. Why do some nuclei fission in apparently random fashion, while others don't? How is the state of different nuclei different from one another? This is mentioned in Inward Bound by Abraham Pais (1988) Chapter 6.e Why a half-life?
The term also sees use in other areas, notably biology, where e.g. RNAs spontaneously decay as part of the cell's control system, see e.g. mentions in E. Coli Whole Cell Model by Covert Lab.
Protein degradation Updated +Created
proteins also have a half-life, much like RNA. But it tends to be longer.
Radioactive decay Updated +Created
Ciro Santilli finds it interesting that radioactive decay basically kickstarted the domain of nuclear physics by essentially providing a natural particle accelerator from a chunk of radioactive element.
The discovery process was particularly interesting, including Henri Becquerel's luck while observing phosphorescence, and Marie Curie's observation that the uranium ore were more radioactive than pure uranium, and must therefore contain other even more radioactive substances, which lead to the discovery of polonium (half-life 138 days) and radium (half-life 1600 years).