David Tong Updated +Created
A charismatic, perfect-English-accent (Received Pronunciation) physicist from University of Cambridge, specializing in quantum field theory.
He has done several "vulgarization" lectures, some of which could be better called undergrad appetizers rather, a notable example being Video "Quantum Fields: The Real Building Blocks of the Universe by David Tong (2017)" for the prestigious Royal Institution, but remains a hardcore researcher: scholar.google.com/citations?hl=en&user=felFiY4AAAAJ&view_op=list_works&sortby=pubdate. Lots of open access publications BTW, so kudos.
The amount of lecture notes on his website looks really impressive: www.damtp.cam.ac.uk/user/tong/teaching.html, he looks like a good educator.
David has also shown some interest in applications of high energy mathematical ideas to condensed matter, e.g. links between the renormalization group and phase transition phenomena. TODO there was a YouTube video about that, find it and link here.
Ciro Santilli wonders if his family is of East Asian, origin and if he can still speak any east asian languages. "Tong" is of course a transcription of several major Chinese surnames and from looks he could be mixed blood, but as mentioned at www.ancestry.co.uk/name-origin?surname=tong it can also be an English "metonymic occupational name for a maker or user of tongs". After staring at his picture for a while Ciro is going with the maker of tongs theory initially.
History of quantum mechanics Updated +Created
The discovery of the photon was one of the major initiators of quantum mechanics.
Light was very well known to be a wave through diffraction experiments. So how could it also be a particle???
This was a key development for people to eventually notice that the electron is also a wave.
This process "started" in 1900 with Planck's law which was based on discrete energy packets being exchanged as exposed at On the Theory of the Energy Distribution Law of the Normal Spectrum by Max Planck (1900).
This ideas was reinforced by Einstein's explanation of the photoelectric effect in 1905 in terms of photon.
In the next big development was the Bohr model in 1913, which supposed non-classical physics new quantization rules for the electron which explained the hydrogen emission spectrum. The quantization rule used made use of the Planck constant, and so served an initial link between the emerging quantized nature of light, and that of the electron.
The final phase started in 1923, when Louis de Broglie proposed that in analogy to photons, electrons might also be waves, a statement made more precise through the de Broglie relations.
This event opened the floodgates, and soon matrix mechanics was published in quantum mechanical re-interpretation of kinematic and mechanical relations by Heisenberg (1925), as the first coherent formulation of quantum mechanics.
It was followed by the Schrödinger equation in 1926, which proposed an equivalent partial differential equation formulation to matrix mechanics, a mathematical formulation that was more familiar to physicists than the matrix ideas of Heisenberg.
Inward Bound by Abraham Pais (1988) summarizes his views of the main developments of the subjectit:
  • Planck's on the discovery of the quantum theory (1900);
  • Einstein's on the light-quantum (1905);
  • Bohr's on the hydrogen atom (1913);
  • Bose's on what came to be called quantum statistics (1924);
  • Heisenberg's on what came to be known as matrix mechanics (1925);
  • and Schroedinger's on wave mechanics (1926).
Lysozyme structure resolution (1965) Updated +Created
With X-ray crystallography by David Chilton Phillips. The second protein to be resolved fter after myoglobin, and the first enzyme.
Phillips also published a lower resolution (6angstrom) of the enzyme-inhibitor complexes at about the same time: Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis At 6 Å Resolution (1965). The point of doing this is that it points out the active site of the enzyme.
Trapped ion quantum computer Updated +Created
TODO understand.
Video 1.
Trapping Ions for Quantum Computing by Diana Craik (2019)
Source.
A basic introduction, but very concrete, with only a bit of math it might be amazing:
Sounds complicated, several technologies need to work together for that to work! Videos of ions moving are from www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing.
A major flaw of this presentation is not explaining the readout process.
Video 2.
How To Trap Particles in a Particle Accelerator by the Royal Institution (2016)
Source. Demonstrates trapping pollen particles in an alternating field.
Video 3.
Ion trapping and quantum gates by Wolfgang Ketterle (2013)
Source.
Video 4.
Introduction to quantum optics by Peter Zoller (2018)
Source. THE Zoller from Cirac–Zoller CNOT gate talks about his gate.