Atomic orbital Updated +Created
In the case of the Schrödinger equation solution for the hydrogen atom, each orbital is one eigenvector of the solution.
Remember from time-independent Schrödinger equation that the final solution is just the weighted sum of the eigenvector decomposition of the initial state, analogously to solving partial differential equations with the Fourier series.
This is the table that you should have in mind to visualize them: en.wikipedia.org/w/index.php?title=Atomic_orbital&oldid=1022865014#Orbitals_table
Bessel function Updated +Created
Shows up when trying to solve 2D wave equation on a circular domain in polar coordinates with separation of variables, where we have to decompose the initial condition in termes of a fourier-Bessel series, exactly like the Fourier series appears when solving the wave equation in linear coordinates.
For the same fundamental reasons, also appears when calculating the Schrödinger equation solution for the hydrogen atom.
Hund's rules Updated +Created
Allow us to determine with good approximation in a multi-electron atom which electron configuration have more energy. It is a bit like the Aufbau principle, but at a finer resolution.
Note that this is not trivial since there is no explicit solution to the Schrödinger equation for multi-electron atoms like there is for hydrogen.
For example, consider carbon which has electron configuration 1s2 2s2 2p2.
If we were to populate the 3 p-orbitals with two electrons with spins either up or down, which has more energy? E.g. of the following two:
m_L -1  0  1
    u_ u_ __
    u_ __ u_
    __ ud __
Madelung energy ordering rule Updated +Created
Looking at the energy level of the Schrödinger equation solution for the hydrogen atom, you would guess that for multi-electron atoms that only the principal quantum number would matter, azimuthal quantum number getting filled randomly.
However, orbitals energies for large atoms don't increase in energy like those of hydrogen due to electron-electron interactions.
In particular, the following would not be naively expected:
  • 2s fills up before 2p. From the hydrogen solution, you might guess that they would randomly go into either one as they'd have the same energy
  • in potassium fills up before 3d, even though it has a higher principal quantum number!
This rule is only an approximation, there exist exceptions to the Madelung energy ordering rule.
Photon polarization Updated +Created
The knowledge that light is polarized precedes the knowledge of the existence of the photon, see polarization of light for the classical point of view.
The polarization state and how it can be decomposed into different modes can be well visualized with the Poincaré sphere.
One key idea about photon polarization is that it carries angular momentum. Therefore, when an electron changes orbitals in the Schrödinger equation solution for the hydrogen atom, the angular momentum (as well as energy) change is carried out by the polarization of the photon!
Video 1.
Quantum Mechanics 9b - Photon Spin and Schrodinger's Cat II by ViaScience (2013)
Source.
  • clear animations showing how two circular polarizations can make a vertical polarization
  • a polarizer can be modelled bra operator.
  • light polarization experiments are extremely direct evidence of quantum superposition. Individual photons must be on both L and R states at the same time because a V filter passes half of either L or R single photons, but it passes all L + R photons
Principal quantum number Updated +Created
Determines energy. This comes out directly from the resolution of the Schrödinger equation solution for the hydrogen atom where we have to set some arbitrary values of energy by separation of variables just like we have to set some arbitrary numbers when solving partial differential equations with the Fourier series. We then just happen to see that only certain integer values are possible to satisfy the equations.
Quantization as an Eigenvalue Problem Updated +Created
This paper appears to calculate the Schrödinger equation solution for the hydrogen atom.
TODO is this the original paper on the Schrödinger equation?
Published on Annalen der Physik in 1926.
Open access in German at: onlinelibrary.wiley.com/doi/10.1002/andp.19263840404 which gives volume 384, Issue 4, Pages 361-376. Kudos to Wiley for that. E.g. Nature did not have similar policies as of 2023.
This paper may have fallen into the public domain in the US in 2022! On the Internet Archive we can see scans of the journal that contains it at: ia903403.us.archive.org/29/items/sim_annalen-der-physik_1926_79_contents/sim_annalen-der-physik_1926_79_contents.pdf. Ciro Santilli extracted just the paper to: commons.wikimedia.org/w/index.php?title=File%3AQuantisierung_als_Eigenwertproblem.pdf. It is not as well processed as the Wiley one, but it is of 100% guaranteed clean public domain provenance! TODO: hmmm, it may be public domain in the USA but not Germany, where 70 years after author deaths rules, and Schrodinger died in 1961, so it may be up to 2031 in that country... messy stuff. There's also the question of wether copyright is was tranferred to AdP at publication or not.
Contains formulas such as the Schrödinger equation solution for the hydrogen atom (1''):
where:
  • In order for there to be numerical agreement, must have the value
  • , are the charge and mass of the electron
Quantum number Updated +Created
Quantum numbers appear directly in the Schrödinger equation solution for the hydrogen atom.
However, it very cool that they are actually discovered before the Schrödinger equation, and are present in the Bohr model (principal quantum number) and the Bohr-Sommerfeld model (azimuthal quantum number and magnetic quantum number) of the atom. This must be because they observed direct effects of those numbers in some experiments. TODO which experiments.
E.g. The Quantum Story by Jim Baggott (2011) page 34 mentions:
As the various lines in the spectrum were identified with different quantum jumps between different orbits, it was soon discovered that not all the possible jumps were appearing. Some lines were missing. For some reason certain jumps were forbidden. An elaborate scheme of ‘selection rules’ was established by Bohr and Sommerfeld to account for those jumps that were allowed and those that were forbidden.
This refers to forbidden mechanism. TODO concrete example, ideally the first one to be noticed. How can you notice this if the energy depends only on the principal quantum number?
Video 1.
Quantum Numbers, Atomic Orbitals, and Electron configurations by Professor Dave Explains (2015)
Source. He does not say the key words "Eigenvalues of the Schrödinger equation" (Which solve it), but the summary of results is good enough.
Schrödinger equation Updated +Created
Experiments explained:
Experiments not explained: those that the Dirac equation explains like:
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:
Equation 1.
Schrodinger equation
.
where:
  • is the reduced Planck constant
  • is the wave function
  • is the time
  • is a linear operator called the Hamiltonian. It takes as input a function , and returns another function. This plays a role analogous to the Hamiltonian in classical mechanics: determining it determines what the physical system looks like, and how the system evolves in time, because we can just plug it into the equation and solve it. It basically encodes the total energy and forces of the system.
The argument of could be anything, e.g.:
Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.
Schrödinger equation solution for the hydrogen atom Updated +Created
Is the only atom that has a closed form solution, which allows for very good predictions, and gives awesome intuition about the orbitals in general.
It is arguably the most important solution of the Schrodinger equation.
In particular, it predicts:
The explicit solution can be written in terms of spherical harmonics.
Video 1.
A Better Way To Picture Atoms by minutephysics (2021)
Source. Renderings based on the exact Schrödinger equation solution for the hydrogen atom that depict wave function concentration by concentration of small balls, and angular momentum by how fast the balls rotate at each point. Mentions that the approach is inspired by de Broglie-Bohm theory.
Schrödinger picture Updated +Created
To better understand the discussion below, the best thing to do is to read it in parallel with the simplest possible example: Schrödinger picture example: quantum harmonic oscillator.
The state of a quantum system is a unit vector in a Hilbert space.
"Making a measurement" for an observable means applying a self-adjoint operator to the state, and after a measurement is done:
  • the state collapses to an eigenvector of the self adjoint operator
  • the result of the measurement is the eigenvalue of the self adjoint operator
  • the probability of a given result happening when the spectrum is discrete is proportional to the modulus of the projection on that eigenvector.
    For continuous spectra such as that of the position operator in most systems, e.g. Schrödinger equation for a free one dimensional particle, the projection on each individual eigenvalue is zero, i.e. the probability of one absolutely exact position is zero. To get a non-zero result, measurement has to be done on a continuous range of eigenvectors (e.g. for position: "is the particle present between x=0 and x=1?"), and you have to integrate the probability over the projection on a continuous range of eigenvalues.
    In such continuous cases, the probability collapses to an uniform distribution on the range after measurement.
    The continuous position operator case is well illustrated at: Video "Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)"
Those last two rules are also known as the Born rule.
Self adjoint operators are chosen because they have the following key properties:
  • their eigenvalues form an orthonormal basis
  • they are diagonalizable
Perhaps the easiest case to understand this for is that of spin, which has only a finite number of eigenvalues. Although it is a shame that fully understanding that requires a relativistic quantum theory such as the Dirac equation.
The next steps are to look at simple 1D bound states such as particle in a box and quantum harmonic oscillator.
The solution to the Schrödinger equation for a free one dimensional particle is a bit harder since the possible energies do not make up a countable set.
This formulation was apparently called more precisely Dirac-von Neumann axioms, but it because so dominant we just call it "the" formulation.
Quantum Field Theory lecture notes by David Tong (2007) mentions that:
if you were to write the wavefunction in quantum field theory, it would be a functional, that is a function of every possible configuration of the field .
Solving the Schrodinger equation with the time-independent Schrödinger equation Updated +Created
Before reading any further, you must understand heat equation solution with Fourier series, which uses separation of variables.
Once that example is clear, we see that the exact same separation of variables can be done to the Schrödinger equation. If we name the constant of the separation of variables for energy, we get:
  • a time-only part that does not depend on space and does not depend on the Hamiltonian at all. The solution for this part is therefore always the same exponentials for any problem, and this part is therefore "boring":
  • a space-only part that does not depend on time, bud does depend on the Hamiltonian:
    Since this is the only non-trivial part, unlike the time part which is trivial, this spacial part is just called "the time-independent Schrodinger equation".
    Note that the here is not the same as the in the time-dependent Schrodinger equation of course, as that psi is the result of the multiplication of the time and space parts. This is a bit of imprecise terminology, but hey, physics.
Because the time part of the equation is always the same and always trivial to solve, all we have to do to actually solve the Schrodinger equation is to solve the time independent one, and then we can construct the full solution trivially.
Once we've solved the time-independent part for each possible , we can construct a solution exactly as we did in heat equation solution with Fourier series: we make a weighted sum over all possible to match the initial condition, which is analogous to the Fourier series in the case of the heat equation to reach a final full solution:
  • if there are only discretely many possible values of , each possible energy . we proceed
    Equation 3.
    Solution of the Schrodinger equation in terms of the time-independent and time dependent parts
    .
    and this is a solution by selecting such that at time we match the initial condition:
    A finite spectrum shows up in many incredibly important cases:
  • if there are infinitely many values of E, we do something analogous but with an integral instead of a sum. This is called the continuous spectrum. One notable
The fact that this approximation of the initial condition is always possible from is mathematically proven by some version of the spectral theorem based on the fact that The Schrodinger equation Hamiltonian has to be Hermitian and therefore behaves nicely.
It is interesting to note that solving the time-independent Schrodinger equation can also be seen exactly as an eigenvalue equation where:
The only difference from usual matrix eigenvectors is that we are now dealing with an infinite dimensional vector space.
Furthermore:
Why is the spin of the electron half? Updated +Created
More interestingly, how is that implied by the Stern-Gerlach experiment?
physics.stackexchange.com/questions/266359/when-we-say-electron-spin-is-1-2-what-exactly-does-it-mean-1-2-of-what/266371#266371 suggests that half could either mean: