100 Greatest Discoveries by the Discovery Channel (2004-2005) Updated +Created
Hosted by Bill Nye.
Physics topics:
biology topics:
  • Leeuwenhoek microscope and the discovery of microorganisms, and how pond water is not dead, but teeming with life. No sample of course.
  • 1831 Robert Brown cell nucleus in plants, and later Theodor Schwann in tadpoles. This prepared the path for the idea that "all cells come from other cells", and the there seemed to be an unifying theme to all life: the precursor to DNA discoveries. Re-enactment, yay.
  • 1971 Carl Woese and the discovery of archaea
Genetics:
Medicine:
  • blood circulation
  • anesthesia
  • X-ray
  • germ theory of disease, with examples from Ignaz Semmelweis and Pasteur
  • 1796 Edward Jenner discovery of vaccination by noticing that cowpox cowpox infected subjects were immune
  • vitamin by observing scurvy and beriberi in sailors, confirmed by Frederick Gowland Hopkins on mice experiments
  • Fleming, Florey and Chain and the discovery of penicillin
  • Prontosil
  • diabetes and insulin
Grand Unified Theory Updated +Created
Appears to be an unsolved physics problem. TODO why? Don't they all fit into the Standard Model already? So why is strong force less unified with electroweak, than electromagnetic + weak is unified in electroweak?
Quantum electrodynamics Updated +Created
Theory that describes electrons and photons really well, and as Feynman puts it "accounts very precisely for all physical phenomena we have ever observed, except for gravity and nuclear physics" ("including the laughter of the crowd" ;-)).
Learning it is one of Ciro Santilli's main intellectual fetishes.
While Ciro acknowledges that QED is intrinsically challenging due to the wide range or requirements (quantum mechanics, special relativity and electromagnetism), Ciro feels that there is a glaring gap in this moneyless market for a learning material that follows the Middle Way as mentioned at: the missing link between basic and advanced. Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) is one of the best attempts so far, but it falls a bit too close to the superficial side of things, if only Feynman hadn't assumed that the audience doesn't know any mathematics...
The funny thing is that when Ciro Santilli's mother retired, learning it (or as she put it: "how photons and electrons interact") was also one of her retirement plans. She is a pharmacist by training, and doesn't know much mathematics, and her English was somewhat limited. Oh, she also wanted to learn how photosynthesis works (possibly not fully understood by science as that time, 2020). Ambitious old lady!!!
Combines special relativity with more classical quantum mechanics, but further generalizing the Dirac equation, which also does that: Dirac equation vs quantum electrodynamics. The name "relativistic" likely doesn't need to appear on the title of QED because Maxwell's equations require special relativity, so just having "electro-" in the title is enough.
Before QED, the most advanced theory was that of the Dirac equation, which was already relativistic but TODO what was missing there exactly?
As summarized at: youtube.com/watch?v=_AZdvtf6hPU?t=305 Quantum Field Theory lecture at the African Summer Theory Institute 1 of 4 by Anthony Zee (2004):
  • classical mechanics describes large and slow objects
  • special relativity describes large and fast objects (they are getting close to the speed of light, so we have to consider relativity)
  • classical quantum mechanics describes small and slow objects.
  • QED describes objects that are both small and fast
That video also mentions the interesting idea that:
Therefore, for small timescales, energy can vary a lot. But mass is equivalent to energy. Therefore, for small time scale, particles can appear and disappear wildly.
QED is the first quantum field theory fully developed. That framework was later extended to also include the weak interaction and strong interaction. As a result, it is perhaps easier to just Google for "Quantum Field Theory" if you want to learn QED, since QFT is more general and has more resources available generally.
Like in more general quantum field theory, there is on field for each particle type. In quantum field theory, there are only two fields to worry about:
Video 1.
Lecture 01 | Overview of Quantum Field Theory by Markus Luty (2013)
Source. This takes quite a direct approach, one cool thing he says is how we have to be careful with adding special relativity to the Schrödinger equation to avoid faster-than-light information.
Theory of everything Updated +Created
As of 2019, the Standard Model and general relativity are incompatible. Once those are unified, we will have one equation to describe the entirety of physics.
There are also however also unsolved problems in electroweak interaction + strong interaction, which if achieved is referred to as a Grand Unified Theory. Reaching a GUT is considered a sensible intermediate step before TOE.
The current state of Physics has been the result of several previous unifications as shown at: en.wikipedia.org/wiki/Theory_of_everything#Conventional_sequence_of_theories so it is expected that this last missing unification is likely to happen one day, potentially conditional on humanity having enough energy to observe new phenomena.