React function components do produce shorter code. But they are also impossible to understand without knowing what is their corresponding class component.
Hooks were introduced much after classes, and just require less code, so everyone is using them now instead of classes.
SMIC by Ciro Santilli 37 Updated 2025-07-16
Video 1.
SMIC, Explained by Asianometry (2021)
Source.
Standard cell library by Ciro Santilli 37 Updated 2025-07-16
Basically what register transfer level compiles to in order to achieve a real chip implementation.
After this is done, the final step is place and route.
The standard cell library is typically composed of a bunch of versions of somewhat simple gates, e.g.:
  • AND with 2 inputs
  • AND with 3 inputs
  • AND with 4 inputs
  • OR with 2 inputs
  • OR with 3 inputs
and so on.
Each of those gates has to be designed by hand as a 3D structure that can be produced in a given fab.
Simulations are then carried out, and the electric properties of those structures are characterized in a standard way as a bunch of tables of numbers that specify things like:
  • how long it takes for electrons to pass through
  • how much heat it produces
Those are then used in power, performance and area estimates.
Bad film by Ciro Santilli 37 Updated 2025-07-16
Many bad films have good aspects. They just didn't cross the elusive threshold of a good film.
Asianometry by Ciro Santilli 37 Updated 2025-07-16
Very good channel to learn some basics of semiconductor device fabrication!
Focuses mostly on the semiconductor industry.
youtu.be/aL_kzMlqgt4?t=661 from Video "SMIC, Explained by Asianometry (2021)" from mentions he is of Chinese ascent, ancestors from Ningbo. Earlier in the same video he mentions he worked on some startups. He doesn't appear to speak perfect Mandarin Chinese anymore though based on pronounciation of Chinese names.
asianometry.substack.com/ gives an abbreviated name "Jon Y".
Video 1.
Reflecting on Asianometry in 2022 by Asianometry (2022)
Source. Mentions his insane work schedule: 4 hours research in the morning, then day job, then editing and uploading until midnight. Appears to be based in Taipei. Two videos a week. So even at the current 400k subs, he still can't make a living.
AGI-complete by Ciro Santilli 37 Updated 2025-07-16
Term invented by Ciro Santilli to refer to problems that can only be solved once we have AGI.
It is somewhat of a flawed analogy to NP-complete.
The example under verilog/interactive showcases how to create a simple interactive visual Verilog example using Verilator and SDL.
https://raw.githubusercontent.com/cirosantilli/media/master/verilog-interactive.gif
You could e.g. expand such an example to create a simple (or complex) video game for example if you were insane enough. But please don't waste your time doing that, Ciro Santilli begs you.
Usage: install dependencies:
sudo apt install libsdl2-dev verilator
then run as either:
make run RUN=and2
make run RUN=move
Tested on Verilator 4.038, Ubuntu 22.04.
In those examples, the more interesting application specific logic is delegated to Verilog (e.g.: move game character on map), while boring timing and display matters can be handled by SDL and C++.
Like everything else in programming, the only way to really understand this is to play with minimal examples.
What makes this a "hard" subject is that the minimal example is large because you need to make your own small OS.
Paging makes it easier to compile and run two programs or threads at the same time on a single computer.
For example, when you compile two programs, the compiler does not know if they are going to be running at the same time or not.
So nothing prevents it from using the same RAM address, say, 0x1234, to store a global variable.
And thread stacks, that must be contiguous and keep growing down until they overwrite each other, are an even bigger issue!
But if two programs use the same address and run at the same time, this is obviously going to break them!
Paging solves this problem beautifully by adding one degree of indirection:
(logical) ------------> (physical)
             paging
Where:
  • logical addresses are what userland programs see, e.g. the contents of rsi in mov eax, [rsi].
    They are often called "virtual" addresses as well.
  • physical addresses can be though of the values that go to physical RAM index wires.
    But keep in mind that this is not 100% true because of further indirections such as:
Compilers don't need to worry about other programs: they just use simple logical addresses.
As far as programs are concerned, they think they can use any address between 0 and 4 GiB (2^32, FFFFFFFF) on 32-bit systems.
The OS then sets up paging so that identical logical addresses will go into different physical addresses and not overwrite each other.
This makes it much simpler to compile programs and run them at the same time.
Paging achieves that goal, and in addition:
  • the switch between programs is very fast, because it is implemented by hardware
  • the memory of both programs can grow and shrink as needed without too much fragmentation
  • one program can never access the memory of another program, even if it wanted to.
    This is good both for security, and to prevent bugs in one program from crashing other programs.
Or if you like non-funny jokes:
Figure 1.
Comparison between the Linux kernel userland memory virtualization and The Matrix
. Source. Is this RAM real?
Suppose that the OS has setup the following page tables for process 1:
entry index   entry address       page address   present
-----------   ------------------  ------------   -------
0             CR3_1 + 0      * 4  0x00001        1
1             CR3_1 + 1      * 4  0x00000        1
2             CR3_1 + 2      * 4  0x00003        1
3             CR3_1 + 3      * 4                 0
...
2^20-1        CR3_1 + 2^20-1 * 4  0x00005        1
and for process 2:
entry index   entry address       page address   present
-----------   -----------------   ------------   -------
0             CR3_2 + 0      * 4  0x0000A        1
1             CR3_2 + 1      * 4  0x12345        1
2             CR3_2 + 2      * 4                 0
3             CR3_2 + 3      * 4  0x00003        1
...
2^20-1        CR3_2 + 2^20-1 * 4  0xFFFFF        1
Before process 1 starts running, the OS sets its cr3 to point to the page table 1 at CR3_1.
When process 1 tries to access a linear address, this is the physical addresses that will be actually accessed:
linear     physical
---------  ---------
00000 001  00001 001
00000 002  00001 002
00000 003  00001 003
00000 FFF  00001 FFF
00001 000  00000 000
00001 001  00000 001
00001 FFF  00000 FFF
00002 000  00003 000
FFFFF 000  00005 000
To switch to process 2, the OS simply sets cr3 to CR3_2, and now the following translations would happen:
linear     physical
---------  ---------
00000 002  0000A 002
00000 003  0000A 003
00000 FFF  0000A FFF
00001 000  12345 000
00001 001  12345 001
00001 FFF  12345 FFF
00004 000  00003 000
FFFFF 000  FFFFF 000
Step-by-step translation for process 1 of logical address 0x00000001 to physical address 0x00001001:
  • split the linear address into two parts:
    | page (20 bits) | offset (12 bits) |
    So in this case we would have:
    *page = 0x00000. This part must be translated to a physical location.
    *offset = 0x001. This part is added directly to the page address, and is not translated: it contains the position within the page.
  • look into Page table 1 because cr3 points to it.
  • The hardware knows that this entry is located at RAM address CR3 + 0x00000 * 4 = CR3:
    *0x00000 because the page part of the logical address is 0x00000
    *4 because that is the fixed size in bytes of every page table entry
  • since it is present, the access is valid
  • by the page table, the location of page number 0x00000 is at 0x00001 * 4K = 0x00001000.
  • to find the final physical address we just need to add the offset:
      00001 000
    + 00000 001
      ---------
      00001 001
    because 00001 is the physical address of the page looked up on the table and 001 is the offset.
    We shift 00001 by 12 bits because the pages are always aligned to 4 KiB.
    The offset is always simply added the physical address of the page.
  • the hardware then gets the memory at that physical location and puts it in a register.
Another example: for logical address 0x00001001:
  • the page part is 00001, and the offset part is 001
  • the hardware knows that its page table entry is located at RAM address: CR3 + 1 * 4 (1 because of the page part), and that is where it will look for it
  • it finds the page address 0x00000 there
  • so the final address is 0x00000 * 4k + 0x001 = 0x00000001

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact